Precision immunoprofiling to reveal diagnostic biomarkers of latent TB infection
精确免疫分析揭示潜伏结核感染的诊断生物标志物
基本信息
- 批准号:10247473
- 负责人:
- 金额:$ 74.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-05 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAmericanAntibiotic TherapyAntibioticsAntigensBioinformaticsBiological AssayBiological MarkersClinicalClinical TreatmentCollaborationsComplexCytokine Network PathwayDetectionDevelopmentDiagnosisDiagnosticDiseaseDisease ManagementEligibility DeterminationGenerationsGoalsGoldHealth PersonnelImmuneImmune responseImmunocompetentImmunologic MarkersImmunologic MemoryImmunologic MonitoringIndividualInfectionInflammatoryInformaticsInterferonsInternationalLocationMachine LearningMeasurementMeasuresModelingPatientsPeripheralPeripheral Blood Mononuclear CellPlasmaPopulationPredictive ValuePrevention strategyRegimenResidual stateRiskSamplingScheduleSiliconSpecificityStratificationTechnologyTestingTherapeutic InterventionTranslationsTuberculin TestTuberculosisWhole Bloodantigen challengebasebioinformatics toolbiomarker signatureclinical Diagnosisclinical practicecytokinedata streamsdiagnostic accuracydiagnostic biomarkerfeature selectionhigh riskimmune functionimmunoregulationimprovedindividual variationlatent infectionmachine learning algorithmmodel developmentmonocytemortalitynovel diagnosticsnovel strategiespatient stratificationpersonalized approachpersonalized diagnosticsphotonicsprecision medicinepredictive markerpredictive modelingpreventprognosticprospectiveresponsescreeningside effecttargeted treatmenttooltreatment strategytuberculosis treatment
项目摘要
PROJECT SUMMARY
Tuberculosis (TB) is among the leading causes of mortality worldwide with an estimated 2 billion individuals
currently infected. Latent tuberculosis infection (LTBI) is the most common form of TB infection affecting 13
million Americans. While many with LTBI remain asymptomatic, an estimated 10% of immunocompetent patients
with LTBI will reactivate to active TB, and will become infectious. LTBI is treatable with a prolonged antibiotic
treatment; however, potential side effects motivate the development of new diagnostic approaches that can
identify with high specificity patients at the highest risk of reactivation, for who therapy would be most beneficial.
The tuberculin skin test (TST) and interferon-γ release assays (IGRAs) are commonly used for TB and LTBI
screening. Both tests provide good measures of TB exposure; however, neither is effective at diagnosing LTBI
(positive predictive values <5%). Moreover, neither provide any prognostic stratification based upon reactivation
risk. Both the TST and IGRAs probe immunological memory to TB-related antigen challenges and we
hypothesize that a more nuanced and personalized approach to monitoring immune responses to both TB-
specific and non-specific antigens might reveal new approaches to LTBI diagnosis and patient stratification.
Enabling a new, individualized approach to LTBI diagnostics, we propose to combine high throughput,
multiplexed inflammatory biomarker detection strategies and powerful bioinformatics tools that allow for the
identification of previously obscured multi-marker diagnostic signatures of LTBI status and reactivation risk.
Silicon photonic microring resonators are an enabling technology for biomarker analysis due to their intrinsic
scalability and multiplexing capabilities. Applied to the detection of cytokine panels, this technology supports the
rapid immune profiling of individual samples under both TB-specific and non-specific antigen stimulation
conditions. Machine learning algorithms will be utilized to analyze the resulting dense data streams to facilitate
selection of key diagnostic signatures forming the basis for predictive model development and deployment. This
powerful analytical combination is supplemented by deep expertise in clinical diagnosis and treatment of TB and
LTBI, and an enabling collaboration and connection to subjects from an international location with high TB burden
and exposure in a healthcare worker population subjected to regularly-scheduled and repeated LTBI screening.
The resulting diagnostic workflow and machine learning feature selection approaches will reveal multiplexed
biomarker signatures that have strong positive predictive correlation with LTBI status (+ or -). This approach will also
further stratify LTBI+ subjects on the basis of reactivation potential, thus providing a fundamentally new approach to
identifying subjects that are most likely to benefit from therapeutic intervention. The end result of this project will be a
new precision medicine-based diagnostic strategy that is vastly superior to the current state-of-the-art and offers the
potential to transform current clinical practice.
项目摘要
结核病(TB)是全世界死亡的主要原因之一,估计有20亿人
目前感染。潜伏性结核病感染(LTBI)是最常见的结核病感染形式,
百万美国人。虽然许多LTBI患者仍无症状,但估计有10%的免疫功能正常的患者
LTBI会重新激活为活动性结核病,并具有传染性。LTBI可通过长期抗生素治疗
然而,潜在的副作用促使开发新的诊断方法,
以高特异性确定处于最高再激活风险的患者,因为治疗将是最有益的。
结核菌素皮肤试验(TST)和γ-干扰素释放试验(IGRA)通常用于TB和LTBI
筛选这两种测试都提供了很好的测量结核病暴露的方法;但是,在诊断LTBI方面都不是有效的
(阳性预测值<5%)。此外,也没有提供任何基于再激活的预后分层
风险TST和IGRA都探测了对TB相关抗原攻击的免疫记忆,
假设一种更细致和个性化的方法来监测对结核病和结核病的免疫反应,
特异性和非特异性抗原可能揭示LTBI诊断和患者分层的新方法。
实现一种新的,个性化的LTBI诊断方法,我们建议联合收割机高通量,
多重炎症生物标志物检测策略和强大的生物信息学工具,
识别先前模糊的LTBI状态和再激活风险的多标记诊断特征。
硅光子微谐振器是一种用于生物标志物分析的使能技术,这是由于其固有的特性。
可扩展性和多路复用能力。应用于细胞因子面板的检测,该技术支持
在TB特异性和非特异性抗原刺激下对单个样品进行快速免疫分析
条件将利用机器学习算法来分析由此产生的密集数据流,
选择关键的诊断特征,形成预测模型开发和部署的基础。这
强大的分析组合加上结核病临床诊断和治疗方面的深厚专业知识,
LTBI,以及与来自结核病负担高的国际地区的受试者的合作和联系
和暴露在一个医疗保健工作者群体进行定期安排和重复LTBI筛选。
由此产生的诊断工作流程和机器学习特征选择方法将揭示多重
与LTBI状态(+或-)具有强阳性预测相关性的生物标志物特征。这种方法还将
根据再激活潜力进一步对LTBI+受试者进行分层,从而提供了一种全新的方法,
确定最有可能受益于治疗干预的受试者。该项目的最终结果将是
一种新的基于精确医学的诊断策略,大大上级当前最先进的技术水平,
改变当前临床实践的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan C Bailey其他文献
Ryan C Bailey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ryan C Bailey', 18)}}的其他基金
Precision immunoprofiling to reveal diagnostic biomarkers of latent TB infection
精确免疫分析揭示潜伏结核感染的诊断生物标志物
- 批准号:
10471266 - 财政年份:2019
- 资助金额:
$ 74.65万 - 项目类别:
Precision immunoprofiling to reveal diagnostic biomarkers of latent TB infection
精确免疫分析揭示潜伏结核感染的诊断生物标志物
- 批准号:
10006790 - 财政年份:2019
- 资助金额:
$ 74.65万 - 项目类别:
Droplet Microfluidic Platform for Ultralow Input Epigenetics
用于超低输入表观遗传学的液滴微流控平台
- 批准号:
9015419 - 财政年份:2015
- 资助金额:
$ 74.65万 - 项目类别:
Multiplexed Platform to Probe Interactions at the Model Cell Membrane Interface
用于探测模型细胞膜界面相互作用的多重平台
- 批准号:
9316049 - 财政年份:2014
- 资助金额:
$ 74.65万 - 项目类别:
Multiplexed Platform to Probe Interactions at the Model Cell Membrane Interface
用于探测模型细胞膜界面相互作用的多重平台
- 批准号:
8674700 - 财政年份:2014
- 资助金额:
$ 74.65万 - 项目类别:
Multiplexed Platform to Probe Interactions at the Model Cell Membrane Interface
用于探测模型细胞膜界面相互作用的多重平台
- 批准号:
9058562 - 财政年份:2014
- 资助金额:
$ 74.65万 - 项目类别:
Multiplexed Platform to Probe Interactions at the Model Cell Membrane Interface
用于探测模型细胞膜界面相互作用的多重平台
- 批准号:
8841783 - 财政年份:2014
- 资助金额:
$ 74.65万 - 项目类别:
Meso-plex miRNA and protein profiling for cancer diagnostics using chip-integrate
使用芯片集成进行癌症诊断的中观复合体 miRNA 和蛋白质分析
- 批准号:
8900786 - 财政年份:2013
- 资助金额:
$ 74.65万 - 项目类别:
Meso-plex miRNA and protein profiling for cancer diagnostics using chip-integrate
使用芯片集成进行癌症诊断的中观复合体 miRNA 和蛋白质分析
- 批准号:
8547294 - 财政年份:2013
- 资助金额:
$ 74.65万 - 项目类别:
Meso-plex miRNA and protein profiling for cancer diagnostics using chip-integrate
使用芯片集成进行癌症诊断的中观复合体 miRNA 和蛋白质分析
- 批准号:
8722505 - 财政年份:2013
- 资助金额:
$ 74.65万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 74.65万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 74.65万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 74.65万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 74.65万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 74.65万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 74.65万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 74.65万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 74.65万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 74.65万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 74.65万 - 项目类别:
Research Grant