Delayed Diagnosis of Serious Pediatric Emergency Conditions
严重儿科紧急情况的延迟诊断
基本信息
- 批准号:10246799
- 负责人:
- 金额:$ 15.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY
Delays in diagnosis represent a major cause of morbidity in the emergency department (ED) setting. Children
are likely at increased risk of delayed diagnosis in the ED because symptoms and signs of serious disease
may be nonspecific, and because as many as 95% of children visit EDs that primarily evaluate adults. Rates of
delayed diagnosis among children in the ED are unknown, but likely vary substantially across settings.
Because delayed diagnosis represents a major threat to patient safety, focused research is needed to
determine its incidence, risk factors, and outcomes in children visiting EDs. The major objective of this
project is to determine patient and hospital attributes that increase the risk for delayed diagnosis of
serious conditions among children visiting EDs, and to determine the differences in patient outcomes
when delayed diagnosis occurs. The project’s specific aims are (1) to refine and validate an algorithm for
accurately detecting delayed diagnosis of three representative serious conditions (appendicitis, new-onset
diabetic ketoacidosis, and sepsis) in billing claims data; (2) to determine the incidence, between-hospital
variability, and risk factors for delayed diagnosis; and (3) to determine condition-specific outcomes of delay.
Aim 1 will refine the claims detection algorithm and compare its performance with manual record review; it will
be conducted at multiple collaborating centers. Aims 2 and 3 will use the Agency for Healthcare Research and
Quality (AHRQ) Statewide ED and Inpatient Databases for multiple states to apply the algorithm to identify
delayed diagnoses. Multilevel models will be constructed to assess predictors of delay and related health and
utilization outcomes including need for surgical procedures, critical care interventions, prolonged hospital
stays, and death. This study will directly address a top AHRQ research priority, improving health care patient
safety through identification of risks, hazards, and harms. We will focus exclusively on children, an
AHRQ priority population. The results of this research will directly allow more widespread detection
and surveillance of diagnostic delays for critical high-risk conditions, and hone methods to expand to
others. This approach utilizing a claims detection method would allow the kind of monitoring of error that is a
fundamental property of a learning health system. The Principal Investigator, Dr. Kenneth Michelson, is an
early career physician-scientist with a strong clinical background in Pediatrics and Emergency Medicine. This
award will foster his development as a researcher with content expertise in diagnostic error, sophisticated
outcomes analysis using multilevel modeling, large database analytics, and implementation science. A strong
mentorship team composed of experienced biostatistical, quantitative, emergency medicine, and diagnostic
error experts support the project and foster Dr. Michelson’s career development toward independent research.
项目摘要
延误诊断是急诊科(艾德)发病的主要原因。儿童
在艾德,由于严重疾病的症状和体征,
可能是非特异性的,因为多达95%的儿童访问ED,主要评估成人。率
艾德儿童中的延迟诊断尚不清楚,但可能在不同环境中差异很大。
由于延迟诊断对患者安全构成重大威胁,因此需要进行重点研究,
确定其发病率,危险因素,并在儿童访问ED的结果。本项目的主要目标是
该项目旨在确定增加延迟诊断风险的患者和医院属性,
严重的情况下,儿童访问ED,并确定患者的结果的差异
当诊断延迟时。该项目的具体目标是(1)完善和验证算法,
准确检测三种代表性严重疾病(阑尾炎、新发
糖尿病酮症酸中毒和脓毒症)在账单索赔数据;(2)确定医院间的发病率
变异性和延迟诊断的风险因素;(3)确定延迟的特定条件结果。
Aim 1将改进索赔检测算法,并将其性能与手动记录审查进行比较;它将
在多个合作中心开展。目标2和3将利用保健研究机构,
质量(AHRQ)全州艾德和多个州的住院患者数据库,以应用算法识别
延迟诊断将建立多层次模型,以评估延误和相关健康的预测因素,
使用结果,包括需要外科手术、重症监护干预、住院时间延长
停留,死亡。这项研究将直接解决AHRQ的首要研究重点,改善医疗保健患者
通过识别风险、危害和伤害来确保安全。我们将专门关注儿童,
AHRQ优先人群。这项研究的结果将直接允许更广泛的检测
和监测诊断延误的关键高风险条件,并磨练方法,以扩大到
他人这种利用索赔检测方法的方法将允许对错误的监控,
学习健康系统的基本属性。首席研究员Kenneth Michelson博士是一名
具有儿科和急诊医学临床背景的早期职业医生-科学家。这
该奖项将促进他作为一个研究人员的发展,在诊断错误,复杂的内容专业知识,
使用多层次建模、大型数据库分析和实施科学进行结果分析。一个强大
导师团队由经验丰富的生物统计,定量,急诊医学和诊断
错误专家支持该项目,并促进迈克尔逊博士的职业发展,走向独立研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenneth Michelson其他文献
Kenneth Michelson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenneth Michelson', 18)}}的其他基金
Measuring and Mapping National Pediatric Acute Care Outcomes
衡量和绘制全国儿科急性护理成果
- 批准号:
10714729 - 财政年份:2023
- 资助金额:
$ 15.34万 - 项目类别:
Delayed Diagnosis of Serious Pediatric Emergency Conditions
严重儿科紧急情况的延迟诊断
- 批准号:
10468713 - 财政年份:2019
- 资助金额:
$ 15.34万 - 项目类别:
Delayed Diagnosis of Serious Pediatric Emergency Conditions
严重儿科紧急情况的延迟诊断
- 批准号:
10866851 - 财政年份:2019
- 资助金额:
$ 15.34万 - 项目类别:
Delayed Diagnosis of Serious Pediatric Emergency Conditions
严重儿科紧急情况的延迟诊断
- 批准号:
10001484 - 财政年份:2019
- 资助金额:
$ 15.34万 - 项目类别:
相似海外基金
N2Vision+: A robot-enabled, data-driven machine vision tool for nitrogen diagnosis of arable soils
N2Vision:一种由机器人驱动、数据驱动的机器视觉工具,用于耕地土壤的氮诊断
- 批准号:
10091423 - 财政年份:2024
- 资助金额:
$ 15.34万 - 项目类别:
Collaborative R&D
Exploring the Impact of Clinical Diagnosis on Health and Education Outcomes for Children Receiving Special Educational Needs support for Autism
探索临床诊断对接受自闭症特殊教育需求支持的儿童的健康和教育结果的影响
- 批准号:
ES/Z502431/1 - 财政年份:2024
- 资助金额:
$ 15.34万 - 项目类别:
Fellowship
Intelligent Breast Cancer DiagnOsis and MonItoring Therapeutic Response Training Network (CanDoIt)
智能乳腺癌诊断和监测治疗反应训练网络(CanDoIt)
- 批准号:
EP/Y03693X/1 - 财政年份:2024
- 资助金额:
$ 15.34万 - 项目类别:
Research Grant
mPatch: a rapid test for improving diagnosis and triage of melanoma patients in primary care
mPatch:一种快速测试,用于改善初级保健中黑色素瘤患者的诊断和分诊
- 批准号:
MR/Y503381/1 - 财政年份:2024
- 资助金额:
$ 15.34万 - 项目类别:
Research Grant
A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
- 批准号:
24K07389 - 财政年份:2024
- 资助金额:
$ 15.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The world's first positronium lifetime imaging for in site tumor diagnosis during carbon ion therapy
世界上第一个用于碳离子治疗期间现场肿瘤诊断的正电子寿命成像
- 批准号:
24K15607 - 财政年份:2024
- 资助金额:
$ 15.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Cyber-Physical System for Unified Diagnosis and Treatment of Lung Disease
肺部疾病统一诊疗的网络物理系统
- 批准号:
MR/Y011694/1 - 财政年份:2024
- 资助金额:
$ 15.34万 - 项目类别:
Fellowship
Improving detection and diagnosis of antimicrobial resistance in Aspergillus fumigatus
改进烟曲霉抗菌药物耐药性的检测和诊断
- 批准号:
MR/Y034473/1 - 财政年份:2024
- 资助金额:
$ 15.34万 - 项目类别:
Research Grant
Deciphering electrophysiological Alzheimer's Disease biomarkers for early diagnosis using interpretable deep learning
使用可解释的深度学习破译电生理阿尔茨海默病生物标志物以进行早期诊断
- 批准号:
24K18602 - 财政年份:2024
- 资助金额:
$ 15.34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Self-Illuminated PDT Platform for Highly Specific Diagnosis and Therapeutics for Deep Sited Tumor
用于深部肿瘤高度特异性诊断和治疗的自发光 PDT 平台
- 批准号:
EP/Y036646/1 - 财政年份:2024
- 资助金额:
$ 15.34万 - 项目类别:
Fellowship