The Federated Tumor Segmentation (FeTS) platform: An intuitive tool facilitating secure multi-institutional collaboration

联合肿瘤分割 (FeTS) 平台:促进安全多机构协作的直观工具

基本信息

  • 批准号:
    10248412
  • 负责人:
  • 金额:
    $ 35.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-05 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT: Accurate segmentation of solid tumors is challenging, due to their heterogeneous shape, extent, and location, as well as their appearance variation caused by the diversity of medical imaging. Manual annotation is tedious, prone to misinterpretation, human error, and observer bias. All these factors hinder further image analysis towards understanding tumor radio-phenotypes, predicting clinical outcomes, and monitoring progression patterns. Computational competitions have been seeking optimal advanced computational segmentation algorithms (ACSAs) for specific abnormalities, by pooling multi-institutional data together and benchmarking ACSAs from international groups. Along these lines, we have been successfully leading the organization of the International Brain Tumor Segmentation (BraTS) challenge, since 2012, towards a publicly-available pooled dataset of 542 multi-parametric MRI scans of glioma patients from 19 institutions. In the summarized analysis of all BraTS results, we have shown that although individual ACSAs do not outperform the gold standard agreement across expert clinicians, their fusion does outperform it, in terms of both accuracy and consistency across subjects. Towards the wider application of these ACSAs, in 2017 we created the BraTS algorithmic repository to make available Docker containers of individual ACSAs, created by BraTS participants. However, fusion of these ACSAs is still out of reach for clinical researchers, as there is no graphical user interface (GUI) to facilitate it, and execution of such algorithms requires substantial computational background by the user. Furthermore, although competitions such as BraTS have shown promise, they cannot easily scale due to the requirement of pooling patient data from multiple institutions to a single location, that often faces legal, privacy, and data-ownership concerns. These concerns motivate distributed learning solutions, where the data are always retained within their institutions. We have been investigating such solutions to avoid the current paradigm of multi-institutional collaboration, i.e., data-sharing, and considering their potential multi-institutional adoption, with respect to privacy, scalability, and performance, we found federated learning (FL) to be most appropriate. In FL, each institution trains a model and shares it (without patient data) with an aggregation server, which then integrates institutional models in parallel and distributes back a consensus model. In this proposal, we focus on developing the open- source Federated Tumor Segmentation (FeTS) platform, which with a user-friendly GUI will aim at i) bringing pre- trained models of various ACSAs and their fusion closer to clinical experts, and ii) allowing secure multi- institutional collaborations via FL to improve these pre-trained models without sharing patient data, thereby overcoming legal, privacy, and data-ownership challenges. Successful completion of this project will lead to an easy-to-use potentially-translatable tool enabling easy, fast, objective, repeatable and accurate tumor segmentation, without requiring a computational background by the user, and while facilitating further analysis of tumor radio-phenotypes towards accelerating discovery.
摘要: 由于实体瘤的形状、范围和位置不均匀,因此其准确分割是具有挑战性的, 以及由医学成像的多样性引起的它们的外观变化。手动注释是繁琐的, 容易产生误解、人为错误和观察者偏见。所有这些因素都阻碍了进一步的图像分析 了解肿瘤放射表型,预测临床结果和监测进展 模式.计算竞赛一直在寻求最佳的高级计算分割 通过将多机构数据汇集在一起并进行基准测试, 来自国际团体的ACSA。沿着这些路线,我们成功地领导了 国际脑肿瘤分割(BraTS)挑战,自2012年以来,朝着公开可用的汇集 来自19家机构的542例胶质瘤患者的多参数MRI扫描数据集。在总结分析中, 所有的BraTS结果,我们已经表明,虽然个别ACSA不优于黄金标准协议 在专家临床医生中,他们的融合在准确性和一致性方面确实优于它, 科目为了更广泛地应用这些ACSA,我们在2017年创建了BraTS算法库, 提供由BraTS参与者创建的各个ACSA的Docker容器。然而,这些融合 ACSA对于临床研究人员来说仍然遥不可及,因为没有图形用户界面(GUI)来促进它, 这种算法的执行需要用户的大量计算背景。此外,虽然 像BraTS这样的比赛已经显示出了希望,但由于需要汇集,它们不能轻易扩展 将患者数据从多个机构传输到一个位置,通常面临法律的、隐私和数据所有权问题 性问题这些问题激发了分布式学习解决方案,其中数据始终保留在其 机构职能体系我们一直在研究这种解决方案,以避免目前的多机构模式, 协作,即,数据共享,并考虑到其潜在的多机构采用,在隐私方面, 可扩展性和性能,我们发现联邦学习(FL)是最合适的。在佛罗里达州,每个机构 训练一个模型,并与一个聚合服务器共享(没有患者数据),然后将机构 并行建模并分发回共识模型。在这份提案中,我们着重于发展开放的- 源联合肿瘤分割(FeTS)平台,其具有用户友好的GUI,旨在i)将预 各种ACSA的训练模型及其融合更接近临床专家,以及ii)允许安全的多- 通过FL进行机构合作,在不共享患者数据的情况下改进这些预先训练的模型, 克服法律的、隐私和数据所有权方面的挑战。该项目的成功完成将导致 一种易于使用的潜在可平移工具,可实现简单、快速、客观、可重复和准确的肿瘤 分割,而不需要用户的计算背景,同时便于进一步分析 肿瘤放射表型加速发现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Spyridon Bakas其他文献

Spyridon Bakas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Spyridon Bakas', 18)}}的其他基金

Privacy-Aware Federated Learning for Breast Cancer Risk Assessment
用于乳腺癌风险评估的隐私意识联合学习
  • 批准号:
    10742425
  • 财政年份:
    2023
  • 资助金额:
    $ 35.8万
  • 项目类别:

相似海外基金

A study for cross borders Indonesian nurses and care workers: Case of Japan-Indonesia Economic Partnership Agreement
针对跨境印度尼西亚护士和护理人员的研究:日本-印度尼西亚经济伙伴关系协定的案例
  • 批准号:
    22KJ0334
  • 财政年份:
    2023
  • 资助金额:
    $ 35.8万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
NSF-NOAA Interagency Agreement (IAA) for the Global Oscillations Network Group (GONG)
NSF-NOAA 全球振荡网络组 (GONG) 机构间协议 (IAA)
  • 批准号:
    2410236
  • 财政年份:
    2023
  • 资助金额:
    $ 35.8万
  • 项目类别:
    Cooperative Agreement
Conditions for U.S. Agreement on the Closure of Contested Overseas Bases: Relations of Threat, Alliance and Base Alternatives
美国关于关闭有争议的海外基地协议的条件:威胁、联盟和基地替代方案的关系
  • 批准号:
    23K18762
  • 财政年份:
    2023
  • 资助金额:
    $ 35.8万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
MSI Smart Manufacturing Data Hub – Open Calls Grant Funding Agreement
MSI 智能制造数据中心 – 公开征集赠款资助协议
  • 批准号:
    900240
  • 财政年份:
    2023
  • 资助金额:
    $ 35.8万
  • 项目类别:
    Collaborative R&D
Challenges of the Paris Agreement Exposed by the Energy Shift by External Factors: The Case of Renewable Energy Policies in Japan, the U.S., and the EU
外部因素导致的能源转移对《巴黎协定》的挑战:以日本、美国和欧盟的可再生能源政策为例
  • 批准号:
    23H00770
  • 财政年份:
    2023
  • 资助金额:
    $ 35.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Continuation of Cooperative Agreement between U.S. Food and Drug Administration and S.C. Department of Health and Environmental Control (DHEC) for MFRPS Maintenance.
美国食品和药物管理局与南卡罗来纳州健康与环境控制部 (DHEC) 继续签订 MFRPS 维护合作协议。
  • 批准号:
    10829529
  • 财政年份:
    2023
  • 资助金额:
    $ 35.8万
  • 项目类别:
National Ecological Observatory Network Governing Cooperative Agreement
国家生态观测站网络治理合作协议
  • 批准号:
    2346114
  • 财政年份:
    2023
  • 资助金额:
    $ 35.8万
  • 项目类别:
    Cooperative Agreement
The Kansas Department of Agriculture's Flexible Funding Model Cooperative Agreement for MFRPS Maintenance, FPTF, and Special Project.
堪萨斯州农业部针对 MFRPS 维护、FPTF 和特别项目的灵活资助模式合作协议。
  • 批准号:
    10828588
  • 财政年份:
    2023
  • 资助金额:
    $ 35.8万
  • 项目类别:
Robust approaches for the analysis of agreement between clinical measurements: development of guidance and software tools for researchers
分析临床测量之间一致性的稳健方法:为研究人员开发指南和软件工具
  • 批准号:
    MR/X029301/1
  • 财政年份:
    2023
  • 资助金额:
    $ 35.8万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Linguistic transfer in a contact variety of Spanish: Gender agreement production and attitudes
博士论文研究:西班牙语接触变体中的语言迁移:性别协议的产生和态度
  • 批准号:
    2234506
  • 财政年份:
    2023
  • 资助金额:
    $ 35.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了