Relating Drugs to Genotypes to Transform Precision Cancer Therapeutics with Tuba-seq - a Novel, Highly Scalable and Quantitative Preclinical Experimental Oncology Platform
利用 Tuba-seq 将药物与基因型联系起来,以改变精准癌症治疗——一种新颖、高度可扩展的定量临床前实验肿瘤学平台
基本信息
- 批准号:10256762
- 负责人:
- 金额:$ 86.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-08 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelAnimalsAntineoplastic AgentsBar CodesBioinformaticsCRISPR/Cas technologyCancer EtiologyCancer PatientCellsClinicalClinical TrialsCustomDNADNA Sequence AlterationDataDrug InteractionsEngineeringEnsureExperimental ModelsFill-ItFutureGenesGenetically Engineered MouseGenomeGenotypeGoalsHumanImmunocompetentImmunooncologyImmunotherapyIndividualInheritedLeadLentivirus VectorLettersLicensingLung AdenocarcinomaMalignant NeoplasmsMalignant neoplasm of lungMeasuresMethodsModelingMusOncogenicOncologyPatientsPharmaceutical PreparationsPharmacogenomicsPharmacologic SubstancePhaseProtocols documentationPublicationsReportingResearch PersonnelServicesSmall Business Innovation Research GrantSourceSpecific qualifier valueTechniquesTechnologyTherapeuticTimeTissuesTumor Suppressor GenesTumor Suppressor ProteinsUniversitiesValidationVariantWorkcancer cellcancer therapycohortdesigndrug candidatedrug discoveryexperimental studyhuman cancer mouse modelimprovedin vivoinnovationinterestlentiviral-mediatedneoplastic cellnoveloncology programpatient responsepersonalized cancer therapypersonalized medicinepre-clinicalresponsesomatic cell gene editingsuccesstreatment effecttumortumor barcoding and sequencing
项目摘要
PROJECT SUMMARY
D2G Oncology, Inc. proposes to develop a novel preclinical experimental platform that will effectively relate
cancer drugs to genotypes (“D2G”) to predict pharmacogenomic interactions. D2G Oncology's innovative
approach dramatically improves on established autochthonous mouse models of human cancer. These proven
models allow controlled genomic alterations to initiate tumors in vivo in an appropriate immune-competent
microenvironment and faithfully recapitulate progression of human cancer. D2G's innovative methods for the
first time enable these animal models to become truly scalable and rigorously quantitative, and hence prac-
tical to support drug discovery. D2G's approach can efficiently interrogate a large matrix of tumor genotypes to
predict differential patient responses to therapies. Pharmaceutical companies are eager to obtain this infor-
mation. D2G will significantly advance the state of the art in precision cancer therapy by helping pharma to
rationally select candidate compounds to advance and better match them to patients. D2G's oncology platform
will increase the success rate of clinical trials and lead to more effective personalized cancer treatments.
The key innovation is a novel tumor barcoding and sequencing (Tuba-seq) pipeline. Every clonal tumor is
uniquely barcoded, so the identity and number of cancer cells in each tumor can be readily quantified from
bulk tumor-bearing tissues. Combined with lentiviral-mediated CRISPR/Cas9 somatic genome editing, tumor
barcoding allows many predefined tumor genotypes to be generated all at once in individual animals and
tracked separately. Tuba-seq enables many tens of experiments (which would each ordinarily require separate
cohorts of mice) to be multiplexed into a single mouse. Compared with conventional genetically engineered
mouse models, this approach enormously enhances scalability, introduces rigorous quantification, and reduces
sources of variation.
The overall goal of the proposed Direct Phase 2 SBIR project is to transform the Tuba-seq pipeline into a robust
platform that can be marketed as a commercial service to pharmaceutical companies. Specific aims are to (1)
expand the panel of tumor suppressor genes that the platform interrogates and carefully calibrate their effect
sizes and (2) rigorously validate the ability of the platform to resolve small but clinically meaningful differences
in tumor suppressor gene-drug effect sizes with high statistical confidence, relying only on small cohorts of ani-
mals.
D2G will create the first practical and scalable preclinical experimental modeling approach that can assess how
candidate drugs interact with diverse, precisely-engineered cancer genotypes to predict differential patient
responses to therapy.
项目摘要
D2G Oncology,Inc.建议开发一种新的临床前实验平台,
癌症药物与基因型(“D2 G”)的相互作用,以预测药物基因组学相互作用。D2 G Oncology的创新
这种方法极大地改善了已建立的人类癌症本地小鼠模型。这些经过验证
模型允许受控的基因组改变,以在适当的免疫活性细胞中在体内引发肿瘤,
微环境和忠实地重演人类癌症的进展。D2 G的创新方法
第一次使这些动物模型成为真正的可扩展和严格的定量,因此实践,
支持药物发现。D2 G的方法可以有效地询问大量的肿瘤基因型矩阵,
预测患者对治疗的不同反应。制药公司渴望获得这一信息-
mation。D2 G将通过帮助制药公司,
合理选择候选化合物,以推进并更好地将其与患者相匹配。D2 G的肿瘤学平台
将提高临床试验的成功率,并带来更有效的个性化癌症治疗。
关键的创新是一种新的肿瘤条形码和测序(Tuba-seq)管道。每个克隆性肿瘤
独特的条形码,因此每个肿瘤中的癌细胞的身份和数量可以容易地从
大块的肿瘤组织结合慢病毒介导的CRISPR/Cas9体细胞基因组编辑,
条形码化允许在个体动物中一次产生许多预定义的肿瘤基因型,
分开追踪。Tuba-seq可以进行数十个实验(每个实验通常需要单独的
小鼠群)被多路复用到单个小鼠中。与传统的基因工程相比
小鼠模型,这种方法极大地增强了可扩展性,引入了严格的量化,并减少了
变异的来源。
拟议的直接第2阶段SBIR项目的总体目标是将Tuba-seq管道转变为一个强大的
该平台可以作为商业服务向制药公司销售。具体目标是(1)
扩展平台所询问的肿瘤抑制基因组,并仔细校准它们的作用
尺寸和(2)严格验证平台解决微小但有临床意义差异的能力
在具有高统计置信度的肿瘤抑制基因药物效应量中,仅依赖于小的ANI队列,
马尔斯
D2 G将创建第一个实用且可扩展的临床前实验建模方法,
候选药物与不同的,精确工程化的癌症基因型相互作用,以预测不同的患者
对治疗的反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Paul Winters其他文献
Ian Paul Winters的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian Paul Winters', 18)}}的其他基金
Relating Drugs to Genotypes to Transform Precision Cancer Therapeutics with Tuba-seq - a Novel, Highly Scalable and Quantitative Preclinical Experimental Oncology Platform
利用 Tuba-seq 将药物与基因型联系起来,以改变精准癌症治疗——一种新颖、高度可扩展的定量临床前实验肿瘤学平台
- 批准号:
10007689 - 财政年份:2020
- 资助金额:
$ 86.51万 - 项目类别:
Functional Interrogation of Kdm6a-Dependent Tumor Suppression during Pancreatic Cancer
胰腺癌期间 Kdm6a 依赖性肿瘤抑制的功能探讨
- 批准号:
9194632 - 财政年份:2016
- 资助金额:
$ 86.51万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 86.51万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 86.51万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 86.51万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 86.51万 - 项目类别:
Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
- 批准号:
2889694 - 财政年份:2023
- 资助金额:
$ 86.51万 - 项目类别:
Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 86.51万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 86.51万 - 项目类别:
Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 86.51万 - 项目类别:
Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 86.51万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 86.51万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)