Mechanisms of axon guidance during development

发育过程中轴突引导的机制

基本信息

项目摘要

Abl tyrosine kinase is a master regulator of axon growth and guidance throughout the animal kingdom. It is a key regulator of actin structure and dynamics, and a key point of integration of signals from many guidance cue receptors in axonal growth cones. As we reported in two back-to-back papers this year, we can now trace the mechanism by which Abl controls actin structure, and thereby growth cone motility, all the way back to its roots in actin biophysics. In brief, our previous genetics and biochemistry showed that Abl controls the ratio of linear actin polymerization to actin branching (through its antagonistic regulation of the actin polymerase, Enabled, and of the Rac GEF, Trio). Now, by performing high-resolution, quantitative, live imaging of actin in a growth cone advancing in vivo, we have revealed the significance of this regulation. The intermediate level of actin branching maintained by Abl allows a mass of actin in the core of the growth cone to oscillate in length, but only within narrow limits consistent with maintenance of order in the actin distribution. The role of guidance cue receptors is to locally favor actin extension or branching (respectively), which we show introduces a spatial bias to the oscillations of actin, and thus causes the actin mass to advance along a predictable trajectory. Motion of the actin, in turn, favors filopodial assembly in places where the axon is destined to extend, and disassembly of filopodia in places the growth cone is destined to vacate. Over time, this mechanism produces net motion of the dynamic core of the growth cone along the trajectory defined by guidance cues. This molecular model is entirely without precedent in the literature of axon growth and guidance, but in addition to explaining our own observations, it can account for the effects of a wide range of actin modulatory proteins, and also provides simple explanations for numerous longstanding mysteries in the mechanism of axon guidance. Ongoing experiments are performing further tests of our model, both by imaging the phenotypes observed upon genetic manipulation of other Abl pathway components, and by generating detailed computational simulations of the consequences of altering various parameters of actin dynamics. In addition, together with collaborators we are (1) developing novel methods of advanced microscopy that increase the spatial and temporal resolution with which we can monitor growth cone structure and dynamics in live samples, (2) developing novel methods of image analysis to automate tracing of axon images, and (3) investigating the implications that uncontrolled excursions of Abl activity have for the production and maintenance of neural circuits in the context of neurodegenerative disease.
Abl酪氨酸激酶是轴突生长的主要调节剂,并指导整个动物王国。它是肌动蛋白结构和动力学的关键调节因子,也是轴突生长锥中许多导向因子受体信号整合的关键点。正如我们在今年连续发表的两篇论文中所报道的那样,我们现在可以追踪Abl控制肌动蛋白结构的机制,从而追踪生长锥运动,一直追溯到它在肌动蛋白生物物理学中的根源。简而言之,我们之前的遗传学和生物化学表明,Abl控制线性肌动蛋白聚合与肌动蛋白分支的比率(通过其对肌动蛋白聚合酶Enabled和Rac GEF Trio的拮抗调节)。现在,通过对体内生长锥中的肌动蛋白进行高分辨率、定量、实时成像,我们揭示了这种调节的意义。由Abl维持的中间水平的肌动蛋白分支允许生长锥核心中的大量肌动蛋白在长度上振荡,但仅在与维持肌动蛋白分布的秩序一致的狭窄范围内。引导信号受体的作用是局部有利于肌动蛋白的延伸或分支(分别),我们发现这引入了一个空间偏差的肌动蛋白的振荡,从而导致肌动蛋白质量前进沿着一个可预测的轨迹。反过来,肌动蛋白的运动有利于在轴突注定要延伸的地方组装丝状伪足,并在生长锥注定要空出的地方拆卸丝状伪足。随着时间的推移,该机制产生生长锥的动态核心沿着由引导线索限定的轨迹的净运动。这种分子模型在轴突生长和引导的文献中是完全没有先例的,但是除了解释我们自己的观察之外,它还可以解释各种肌动蛋白调节蛋白的作用,并且还为轴突引导机制中许多长期存在的谜团提供了简单的解释。 正在进行的实验正在对我们的模型进行进一步的测试,既通过对其他Abl途径组分的遗传操作后观察到的表型进行成像,又通过对改变肌动蛋白动力学的各种参数的后果进行详细的计算模拟。此外,我们与合作者一起(1)开发先进显微镜的新方法,提高空间和时间分辨率,我们可以监测活体样品中的生长锥结构和动态,(2)开发新的图像分析方法,以自动跟踪轴突图像,以及(3)研究Abl活性的不受控制的偏移对于神经退行性疾病背景下的神经回路的产生和维持的意义。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

edward giniger其他文献

edward giniger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('edward giniger', 18)}}的其他基金

Mechanisms of axon guidance during development
发育过程中轴突引导的机制
  • 批准号:
    8940066
  • 财政年份:
  • 资助金额:
    $ 91.39万
  • 项目类别:
Mechanisms of axon guidance during development
发育过程中轴突引导的机制
  • 批准号:
    7969617
  • 财政年份:
  • 资助金额:
    $ 91.39万
  • 项目类别:
Mechanisms of axon guidance during development
发育过程中轴突引导的机制
  • 批准号:
    10460392
  • 财政年份:
  • 资助金额:
    $ 91.39万
  • 项目类别:
Roles of Cdk5 in neurodevelopment and neurodegeneration
Cdk5 在神经发育和神经变性中的作用
  • 批准号:
    8557079
  • 财政年份:
  • 资助金额:
    $ 91.39万
  • 项目类别:
Roles of Cdk5 in neurodevelopment and neurodegeneration
Cdk5 在神经发育和神经变性中的作用
  • 批准号:
    8746837
  • 财政年份:
  • 资助金额:
    $ 91.39万
  • 项目类别:
Roles of Cdk5 in neurodevelopment and neurodegeneration
Cdk5 在神经发育和神经变性中的作用
  • 批准号:
    10018413
  • 财政年份:
  • 资助金额:
    $ 91.39万
  • 项目类别:
Roles of Cdk5 in neurodevelopment and neurodegeneration
Cdk5 在神经发育和神经变性中的作用
  • 批准号:
    10263039
  • 财政年份:
  • 资助金额:
    $ 91.39万
  • 项目类别:
Roles of Cdk5 in neurodevelopment and neurodegeneration
Cdk5 在神经发育和神经变性中的作用
  • 批准号:
    7969705
  • 财政年份:
  • 资助金额:
    $ 91.39万
  • 项目类别:
Mechanisms of axon guidance during development
发育过程中轴突引导的机制
  • 批准号:
    8557036
  • 财政年份:
  • 资助金额:
    $ 91.39万
  • 项目类别:
Mechanisms of axon guidance during development
发育过程中轴突引导的机制
  • 批准号:
    7735301
  • 财政年份:
  • 资助金额:
    $ 91.39万
  • 项目类别:

相似海外基金

The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
  • 批准号:
    EP/Z000920/1
  • 财政年份:
    2025
  • 资助金额:
    $ 91.39万
  • 项目类别:
    Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
  • 批准号:
    FT230100276
  • 财政年份:
    2024
  • 资助金额:
    $ 91.39万
  • 项目类别:
    ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
  • 批准号:
    MR/X024261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 91.39万
  • 项目类别:
    Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
  • 批准号:
    DE240100388
  • 财政年份:
    2024
  • 资助金额:
    $ 91.39万
  • 项目类别:
    Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
  • 批准号:
    2889694
  • 财政年份:
    2023
  • 资助金额:
    $ 91.39万
  • 项目类别:
    Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
  • 批准号:
    2842926
  • 财政年份:
    2023
  • 资助金额:
    $ 91.39万
  • 项目类别:
    Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
  • 批准号:
    NC/X001644/1
  • 财政年份:
    2023
  • 资助金额:
    $ 91.39万
  • 项目类别:
    Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
  • 批准号:
    2337595
  • 财政年份:
    2023
  • 资助金额:
    $ 91.39万
  • 项目类别:
    Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
  • 批准号:
    2232190
  • 财政年份:
    2023
  • 资助金额:
    $ 91.39万
  • 项目类别:
    Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
  • 批准号:
    23K17514
  • 财政年份:
    2023
  • 资助金额:
    $ 91.39万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了