Gene Variant Curation Core (GVCC)
基因变异管理核心 (GVCC)
基本信息
- 批准号:10265444
- 负责人:
- 金额:$ 18.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAmericanBackBenignBiochemicalBioinformaticsCaliforniaCellsClassificationClinVarCommunitiesComplexComputer ModelsComputer softwareDataData SetDecision MakingEpilepsyFamilyGenesGeneticGenomic approachGoalsHealth PersonnelHumanIndustryInternetKnowledgeMachine LearningMapsMedical GeneticsMichiganMissionModelingNeuronsOnline SystemsPathogenicityPatientsPopulationPopulation DatabasePrevalenceProcessPropertyProteinsProteomicsReportingResearch PersonnelRodentRoentgen RaysSan FranciscoStructural ModelsStructureTest ResultTestingTrans-Omics for Precision MedicineUniversitiesVariantWashingtonWorkZebrafishannotation systembasecare providersclinical carecohortdata managementdata sharinggene discoverygenetic testinggenetic variantgenomic datain vitro Modelin vivoindustry partnermedical schoolsneurogeneticsneuron developmentnovelonline resourceprediction algorithmpredictive modelingprotein structureskillsstatistical and machine learningtoolvariant of unknown significanceworking group
项目摘要
PROJECT SUMMARY/ABSTRACT
The Gene and Variant Curation Core (GVCC) is a multi-institutional core that will be the central hub for
decision making for the genes and variants for study by the Epilepsy Multiplatform Variant Prediction (EpiMVP)
projects in this Center Without Walls (CWOW). The core will integrate genetic sequence data from population
and patient cohorts, as well as the functional readouts from the EpiMVP projects to develop EpiPred. EpiPred
will be an epilepsy-specific computational model that will predict the likelihood of a variant being pathogenic or
benign. The core capitalizes on the broad and multifaceted expertise of investigators at five major universities
including Northwestern University, Weill Cornell Medical College, University of Michigan, University of
California San Francisco and University of Washington. The broad objective of the core is to firstly curate and
select genes and variants for study in projects 1-3 of the EpiMVP. This data will be collated from large
population databases and patient datasets from our industry partners in the clinical genetic testing industry as
well as ClinVar and large consortia sequencing projects. Secondly the GVCC will use prediction tools, protein
structural modeling and functional data from projects 1-3 to create and optimize EpiPred, an epilepsy-specific
computational model that will predict the likelihood of a variant being pathogenic or benign. Finally, the GVCC
will support data management and web-based resources needed for seamless data sharing and
implementation of EpiPred in the epilepsy community. The GVCC will work with ClinGen curators and our
industry partners to test EpiPred accuracy on variants that are curated independently by the Epilepsy Working
Group, allowing refinement of both the algorithm and the criteria used by ClinGen for curation. Eventually, we
aim to incorporate the EpiMVP prediction algorithms into ClinGen curation practices, and ultimately the ACMG
criteria as well. Moreover, to expand the accessibility of EpiPred for patients, families, healthcare providers and
researchers we will establish a web-based version of EpiPred.
项目总结/摘要
基因和变异管理核心(GVCC)是一个多机构的核心,将成为中心枢纽,
癫痫多平台变异预测(EpiMVP)研究基因和变异的决策
无墙中心(Center Without Walls,CWOW)核心将整合来自人口的基因序列数据
以及EpiMVP项目的功能读数,以开发EpiPred。EpiPred
将是一个癫痫特异性计算模型,它将预测一个变异体致病的可能性,
良性的核心利用了五所主要大学调查人员的广泛和多方面的专业知识
包括西北大学、威尔康奈尔医学院、密歇根大学、
加州旧金山弗朗西斯科和华盛顿大学。核心的广泛目标是首先策划和
选择基因和变异体用于EpiMVP项目1-3的研究。这些数据将从大的
来自我们在临床基因检测行业的行业合作伙伴的人口数据库和患者数据集,
以及ClinVar和大型财团测序项目。其次,GVCC将使用预测工具,蛋白质
从项目1-3的结构建模和功能数据,以创建和优化EpiPred,癫痫特异性
计算模型,该模型将预测变体是致病性的或良性的可能性。最后,GVCC
将支持无缝数据共享所需的数据管理和网络资源,
在癫痫社区实施EpiPred。GVCC将与ClinGen策展人和我们的
行业合作伙伴测试EpiPred在癫痫工作组独立策划的变体上的准确性
分组,允许改进ClinGen用于治疗的算法和标准。最终我们
旨在将EpiMVP预测算法纳入ClinGen策展实践,并最终纳入ACMG
标准也是。此外,为了扩大EpiPred对患者,家庭,医疗保健提供者和
研究人员,我们将建立一个基于网络的版本EpiPred。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gemma Louise Carvill其他文献
Gemma Louise Carvill的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gemma Louise Carvill', 18)}}的其他基金
Deep mutational scanning of CHD2 for variant interpretation in neurodevelopmental disorders
CHD2 的深度突变扫描以解释神经发育障碍的变异
- 批准号:
10811491 - 财政年份:2023
- 资助金额:
$ 18.18万 - 项目类别:
An epigenomic approach to identifying noncoding mutations in epilepsy
识别癫痫非编码突变的表观基因组方法
- 批准号:
8931100 - 财政年份:2014
- 资助金额:
$ 18.18万 - 项目类别:
An epigenomic approach to identifying noncoding mutations in epilepsy
识别癫痫非编码突变的表观基因组方法
- 批准号:
8804829 - 财政年份:2014
- 资助金额:
$ 18.18万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 18.18万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 18.18万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 18.18万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 18.18万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 18.18万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 18.18万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 18.18万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 18.18万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 18.18万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 18.18万 - 项目类别:
Research Grant














{{item.name}}会员




