BLR&D Research Career Scientist Award Application

BLR

基本信息

  • 批准号:
    10265408
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Our laboratory is focused on understanding how mitochondrial function contributes to health and disease. As the major energy generating organelle of the cell dysfunction of mitochondria has been implicated in debilitating diseases prevalent in the VA patient population. These include, neurodegenerative diseases (Parkinson's, Alzheimer's), diabetes, cancer, and heart disease. Altered mitochondrial metabolism can result in changed levels of tricarboxylic (TCA) cycle metabolites, (such as succinate or fumarate), that act as signaling molecules to promote a pro-inflammatory state. This can lead to changes in gene transcription, through the induction of reactive oxygen species (ROS), stabilization of hypoxia- inducible factor-1α (HIF-1α), or the nuclear factor erythroid-2-related factor-2 (Nrf2) transcription pathway that responds to pro-inflammatory stress. Our laboratory investigates the structure and function of two essential members of the mitochondrial respiratory chain both of which reduce ubiquinone (CoQ10) used by the oxidative phosphorylation system to generate energy. We study the function of Complex I (NADH:ubiquinone oxidoreductase) which is the largest membrane-bound component of the mitochondrion. NADH generated by the TCA cycle is used by Complex I to reduce CoQ10 and this activity controls the NADH/NAD+ ratio. The enzyme is regulated by a structural change near the membrane domain termed the Active/De-Active (A/D) transition, which we first showed occurred in vivo. We also study succinate dehydrogenase (SDH/Complex II) which is a membrane-bound heterotetramer of dual function. SDH oxidizes succinate to fumarate in the TCA cycle while reducing CoQ10 for energy generation. Malfunction of SDH results in accumulation of succinate in the cell which promotes inflammation. It has been shown that inhibitors of SDH can have a positive effect in treating damage form ischemia/reperfusion in both stroke and cardiac models. Our studies of SDH have shown how the reversible inhibitor malonate binds to the enzyme and causes inhibition. We are now focused on understanding how we can regulate the activity and structure of both Complexes I & II so that this information can be used to treat disease. One model we will use is to investigate how TCA cycle metabolites can be used to treat traumatic brain injury (TBI) or stroke. Dimethyl fumarate (DMF) is an approved drug for treating relapsing multiple sclerosis and psoriasis and Dimethyl malonate (DMM) is a cell-permeable non-toxic compound which in vivo can be used to inhibit SDH. We hypothesize that in the brain injury model that DMM will block succinate accumulation following injury and prevent the signaling that produces ROS during ischemia/reperfusion; thus, reducing inflammation, the severity of the injury, and enhance healing. We use mouse models for these studies. We will also determine if the epigenetic modifier DMF can reduce the inflammation caused by TBI thus lessening the severity of the injury and enhance neuro-regeneration. We were the first to determine the x-ray structure of SDH and have provided major insight into its catalytic mechanism and function. How the enzyme complex is assembled, however, remains and area of intense investigation. We are now studying the assembly of human Complex II using known human assembly factors, needed for incorporation of redox cofactors necessary for function of the enzyme. It has been shown that when assembly is compromised this can lead to tumor formation in humans. We have had success expressing and analyzing the three-dimensional structure of the human structural subunits of SDH expressed in bacterial models. Thus, for the first time the structure of these assembly intermediates will be known. This information is needed to develop small molecule inhibitors/activators that can be used for treatment of diseases associated with mitochondrial dysfunction and control metabolite levels in cells.
我们的实验室专注于了解线粒体功能如何有助于健康, 疾病线粒体作为细胞功能障碍的主要能量产生细胞器, 与VA患者人群中普遍存在的衰弱性疾病有关。其中包括神经退行性疾病 疾病(帕金森氏症,阿尔茨海默氏症),糖尿病,癌症和心脏病。线粒体改变 代谢可导致三羧酸(TCA)循环代谢物(如琥珀酸或琥珀酸)的水平改变。 富马酸盐),其充当信号分子以促进促炎状态。这可能会导致 基因转录,通过诱导活性氧(ROS),稳定缺氧- 诱导因子-1 α(HIF-1α)或核因子红细胞-2相关因子-2(Nrf 2)转录途径 对促炎性压力有反应我们的实验室研究了两个 线粒体呼吸链的重要成员,两者都减少辅酶Q10的使用 氧化磷酸化系统产生能量。我们研究了复合物I的功能 (NADH:泛醌氧化还原酶),其是辅酶的最大膜结合组分。 由TCA循环产生的NADH被复合物I用于还原辅酶Q10,并且该活性控制辅酶Q10的代谢。 NADH/NAD+比率。该酶受膜结构域附近的结构变化调节,称为膜结构域。 主动/去主动(A/D)转换,我们首先表明发生在体内。我们也研究琥珀酸 脱氢酶(SDH/复合物II),其是具有双重功能的膜结合异源四聚体。SDH 在TCA循环中将琥珀酸氧化为富马酸,同时减少辅酶Q10以产生能量。故障 SDH导致琥珀酸在细胞中积累,从而促进炎症。已经显示 SDH的抑制剂在治疗中风和中风中的缺血/再灌注损伤方面具有积极作用, 心脏模型我们对SDH的研究表明了可逆抑制剂丙二酸是如何与酶结合的 并引起抑制。我们现在的重点是了解我们如何能够调节活动, 因此,我们需要研究复合物I和II的结构,以便这些信息可以用于治疗疾病。 我们将使用的一个模型是研究TCA循环代谢物如何用于治疗创伤性 脑损伤(TBI)或中风。富马酸二甲酯(DMF)是一种获批用于治疗复发性多发性硬化症的药物, 而丙二酸二甲酯(DMM)是一种细胞可渗透的无毒化合物, 可用于体内抑制SDH。我们假设在脑损伤模型中,DMM会阻断 琥珀酸积累损伤后,并阻止信号,产生ROS的过程中 缺血/再灌注;因此,减少炎症,损伤的严重性,并增强愈合。我们使用 这些研究的小鼠模型。我们还将确定表观遗传修饰剂DMF是否可以减少 因此,TBI可以减轻由TBI引起的炎症,从而减轻损伤的严重程度并增强神经再生。 我们是第一个确定SDH的X射线结构,并提供了对其结构的主要见解。 催化机理和作用然而,酶复合物是如何组装的, 紧张的调查。我们现在正在研究使用已知的人类复合物II的组装。 组装因子,需要掺入酶功能所必需的氧化还原辅因子。它有 已经表明,当组装受损时,这可能导致人类肿瘤的形成。我们有 成功表达和分析了SDH的人体结构亚基的三维结构 在细菌模型中表达。因此,这些组装中间体的结构将首次被 知道的需要这些信息来开发小分子抑制剂/激活剂,其可用于 治疗与线粒体功能障碍相关的疾病和控制细胞中的代谢物水平。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gary Cecchini其他文献

Gary Cecchini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gary Cecchini', 18)}}的其他基金

BLR&D Research Career Scientist Award Application
BLR
  • 批准号:
    10454205
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
BLR&D Research Career Scientist Award Application
BLR
  • 批准号:
    9899094
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
BLR&D Research Career Scientist Award Application
BLR
  • 批准号:
    10618269
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
THE ROLE OF ACETYLATION IN MITOCHONDRIAL FUNCTION
乙酰化在线粒体功能中的作用
  • 批准号:
    8254308
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
THE ROLE OF ACETYLATION IN MITOCHONDRIAL FUNCTION
乙酰化在线粒体功能中的作用
  • 批准号:
    8398963
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
THE ROLE OF ACETYLATION IN MITOCHONDRIAL FUNCTION
乙酰化在线粒体功能中的作用
  • 批准号:
    8141534
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
THE ROLE OF ACETYLATION IN MITOCHONDRIAL FUNCTION
乙酰化在线粒体功能中的作用
  • 批准号:
    8696819
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
Structure/Function of Complex II Oxidoreductase
复合物 II 氧化还原酶的结构/功能
  • 批准号:
    7930990
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
Molecular & Cellular Bioenergetics Gordon Conference
分子
  • 批准号:
    6803372
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
Regulation of NADH: ubiquinone oxidoreductase (complex *
NADH 的调节:泛醌氧化还原酶(复合物 *
  • 批准号:
    6548756
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

新型F-18标记香豆素衍生物PET探针的研制及靶向Alzheimer's Disease 斑块显像研究
  • 批准号:
    81000622
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
阿尔茨海默病(Alzheimer's disease,AD)动物模型构建的分子机理研究
  • 批准号:
    31060293
  • 批准年份:
    2010
  • 资助金额:
    26.0 万元
  • 项目类别:
    地区科学基金项目
跨膜转运蛋白21(TMP21)对引起阿尔茨海默病(Alzheimer'S Disease)的γ分泌酶的作用研究
  • 批准号:
    30960334
  • 批准年份:
    2009
  • 资助金额:
    22.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Pathophysiological mechanisms of hypoperfusion in mouse models of Alzheimer?s disease and small vessel disease
阿尔茨海默病和小血管疾病小鼠模型低灌注的病理生理机制
  • 批准号:
    10657993
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
  • 批准号:
    10381163
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
  • 批准号:
    10531959
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
  • 批准号:
    10700991
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Interneurons as early drivers of Huntington´s disease progression
中间神经元是亨廷顿病进展的早期驱动因素
  • 批准号:
    10518582
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Interneurons as Early Drivers of Huntington´s Disease Progression
中间神经元是亨廷顿病进展的早期驱动因素
  • 批准号:
    10672973
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
  • 批准号:
    10585925
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Oligodendrocyte heterogeneity in Alzheimer' s disease
阿尔茨海默病中的少突胶质细胞异质性
  • 批准号:
    10180000
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Serum proteome analysis of Alzheimer´s disease in a population-based longitudinal cohort study - the AGES Reykjavik study
基于人群的纵向队列研究中阿尔茨海默病的血清蛋白质组分析 - AGES 雷克雅未克研究
  • 批准号:
    10049426
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Repurposing drugs for Alzheimer´s disease using a reverse translational approach
使用逆翻译方法重新利用治疗阿尔茨海默病的药物
  • 批准号:
    10295809
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了