BLR&D Research Career Scientist Award Application
BLR
基本信息
- 批准号:10265408
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseAmino AcidsApoptosisArchitectureAreaAwardBacterial ModelBindingBinding ProteinsBiochemicalBiochemistryBioenergeticsBrain InjuriesCardiacCellsClinicalCoenzyme Q10ComplexDNADevelopmentDiabetes MellitusDiagnosisDiseaseEarly DiagnosisEnzymesEpigenetic ProcessEthicsFamilyFumaratesFunctional disorderGene ExpressionGenerationsGenesGenetic PolymorphismGenetic TranscriptionHealthHeart DiseasesHemeHomeostasisHumanHuman bodyHypoxia Inducible FactorInflammationInflammatoryInflammatory ResponseInjuryInvestigationIschemiaKidney DiseasesLaboratoriesLaboratory StudyLeadLipidsMaintenanceMalignant NeoplasmsMalonatesMembraneMethodsMineralsMitochondriaMitochondrial ProteinsModelingMultienzyme ComplexesMultiple SclerosisMuscle WeaknessMutationMyocardial InfarctionNADHNADH dehydrogenase (ubiquinone)Nerve DegenerationNerve RegenerationNeurodegenerative DisordersNobel PrizeOrganellesOxidation-ReductionOxidative PhosphorylationOxidesPaperParkinson DiseasePathway interactionsPatientsPermeabilityPharmaceutical PreparationsPhilosophyPhysiologyPlayPoint MutationPoisonProcessProcollagen-Proline DioxygenaseProtein RegionProtonsPsoriasisPublishingQuinone ReductasesReactive Oxygen SpeciesRegulatory ElementRelapseReperfusion TherapyResearchResolutionRespirationRespiratory ChainRoentgen RaysRoleScienceScientistSeriesSeveritiesSignal TransductionSignaling MoleculeStressStrokeStructureStudy modelsSuccinate DehydrogenaseSuccinatesSystemTherapeuticTherapeutic UsesThree-dimensional analysisTimeTraumatic Brain InjuryUbiquinoneUnited States National Academy of SciencesVascular remodelingVeteransVitaminsWorkcareercofactordesignhealinghistone demethylasein vivoinhibitor/antagonistinsightmembermethod developmentmitochondrial dysfunctionmitochondrial membranemitochondrial metabolismmouse modelnewsnuclear factor-erythroid 2nucleotide metabolismpatient populationpreventprogramsprotein complexprotein metabolismprotein structureprotein structure functionresearch and developmentrespiratoryresponsesmall molecule inhibitorsuccessthree dimensional structuretumor
项目摘要
Our laboratory is focused on understanding how mitochondrial function contributes to health and
disease. As the major energy generating organelle of the cell dysfunction of mitochondria has been
implicated in debilitating diseases prevalent in the VA patient population. These include, neurodegenerative
diseases (Parkinson's, Alzheimer's), diabetes, cancer, and heart disease. Altered mitochondrial
metabolism can result in changed levels of tricarboxylic (TCA) cycle metabolites, (such as succinate or
fumarate), that act as signaling molecules to promote a pro-inflammatory state. This can lead to changes in
gene transcription, through the induction of reactive oxygen species (ROS), stabilization of hypoxia-
inducible factor-1α (HIF-1α), or the nuclear factor erythroid-2-related factor-2 (Nrf2) transcription pathway
that responds to pro-inflammatory stress. Our laboratory investigates the structure and function of two
essential members of the mitochondrial respiratory chain both of which reduce ubiquinone (CoQ10) used by
the oxidative phosphorylation system to generate energy. We study the function of Complex I
(NADH:ubiquinone oxidoreductase) which is the largest membrane-bound component of the mitochondrion.
NADH generated by the TCA cycle is used by Complex I to reduce CoQ10 and this activity controls the
NADH/NAD+ ratio. The enzyme is regulated by a structural change near the membrane domain termed the
Active/De-Active (A/D) transition, which we first showed occurred in vivo. We also study succinate
dehydrogenase (SDH/Complex II) which is a membrane-bound heterotetramer of dual function. SDH
oxidizes succinate to fumarate in the TCA cycle while reducing CoQ10 for energy generation. Malfunction of
SDH results in accumulation of succinate in the cell which promotes inflammation. It has been shown that
inhibitors of SDH can have a positive effect in treating damage form ischemia/reperfusion in both stroke and
cardiac models. Our studies of SDH have shown how the reversible inhibitor malonate binds to the enzyme
and causes inhibition. We are now focused on understanding how we can regulate the activity and
structure of both Complexes I & II so that this information can be used to treat disease.
One model we will use is to investigate how TCA cycle metabolites can be used to treat traumatic
brain injury (TBI) or stroke. Dimethyl fumarate (DMF) is an approved drug for treating relapsing multiple
sclerosis and psoriasis and Dimethyl malonate (DMM) is a cell-permeable non-toxic compound which in
vivo can be used to inhibit SDH. We hypothesize that in the brain injury model that DMM will block
succinate accumulation following injury and prevent the signaling that produces ROS during
ischemia/reperfusion; thus, reducing inflammation, the severity of the injury, and enhance healing. We use
mouse models for these studies. We will also determine if the epigenetic modifier DMF can reduce the
inflammation caused by TBI thus lessening the severity of the injury and enhance neuro-regeneration.
We were the first to determine the x-ray structure of SDH and have provided major insight into its
catalytic mechanism and function. How the enzyme complex is assembled, however, remains and area of
intense investigation. We are now studying the assembly of human Complex II using known human
assembly factors, needed for incorporation of redox cofactors necessary for function of the enzyme. It has
been shown that when assembly is compromised this can lead to tumor formation in humans. We have had
success expressing and analyzing the three-dimensional structure of the human structural subunits of SDH
expressed in bacterial models. Thus, for the first time the structure of these assembly intermediates will be
known. This information is needed to develop small molecule inhibitors/activators that can be used for
treatment of diseases associated with mitochondrial dysfunction and control metabolite levels in cells.
我们的实验室致力于了解线粒体功能如何有助于健康和
疾病。作为细胞的主要能量产生细胞器,线粒体的功能障碍一直是
与退伍军人管理局患者群体中流行的衰弱疾病有关。这些包括,神经退行性变
疾病(帕金森氏症、阿尔茨海默氏症)、糖尿病、癌症和心脏病。线粒体改变
新陈代谢会导致三羧酸(TCA)循环代谢物的水平发生变化,如琥珀酸或
富马酸),作为促进促炎状态的信号分子。这可能会导致
基因转录,通过诱导活性氧物种(ROS),稳定低氧-
诱导因子-1α(HIF-1α)或核因子红系相关因子-2(NRF2)转录途径
这是对促炎压力的反应。我们的实验室研究了两个分子的结构和功能
线粒体呼吸链的基本成员,两者都能减少辅酶Q10的使用
氧化磷酸化系统产生能量。我们研究了复合体I的功能
(NADH:泛醌氧化还原酶),是线粒体最大的膜结合成分。
由TCA循环产生的NADH被复合体I用来减少CoQ10,并且这一活动控制
NADH/NAD+比值。这种酶由膜结构域附近的一种结构变化调节,称为
活动/非活动(A/D)转换,这是我们首次在体内发现的。我们也研究琥珀酸
脱氢酶(SDH/Complex II)是一种膜结合型双功能异四聚体。SDH
在三氯乙烷循环中氧化琥珀酸为富马酸,同时降低辅酶Q10以产生能量。的故障。
琥珀酸脱氢酶导致琥珀酸在细胞内积累,从而促进炎症。事实证明,
SDH抑制剂在治疗卒中和脑缺血再灌注损伤中具有积极作用
心脏模型。我们对SDH的研究表明,可逆抑制剂丙二酸是如何与酶结合的
并导致抑制。我们现在专注于了解我们如何规范这一活动,并
两个复合体I和II的结构,以便这些信息可用于治疗疾病。
我们将使用的一个模型是研究TCA循环代谢物如何用于治疗创伤
脑损伤(TBI)或中风。富马酸二甲酯(DMF)是一种被批准用于治疗复发性多发性
硬化症和银屑病和丙二酸二甲酯(DMM)是一种细胞渗透性无毒化合物,在
VIVO可用于抑制SDH。我们假设在脑损伤模型中DMM将阻断
损伤后琥珀酸积累并阻止在损伤过程中产生ROS的信号转导
缺血/再灌注;因此,减轻炎症,减轻损伤的严重程度,并促进愈合。我们用
用于这些研究的小鼠模型。我们还将确定表观遗传修饰剂DMF是否可以降低
颅脑损伤引起的炎症因此减轻了损伤的严重程度,并增强了神经再生。
我们首先确定了sdh的x射线结构,并提供了对它的主要见解。
催化机理和功能。然而,酶复合体是如何组装的,仍然是
严密的调查。我们现在正在研究人类复合体II的组装。
整合酶功能所必需的氧化还原辅因子所需的组装因子。它有
已经证明,当组装受到损害时,这可能会导致人类肿瘤的形成。我们已经有了
成功表达和分析人类SDH结构亚基的三维结构
在细菌模型中表达。因此,这些组装中间体的结构将是第一次
为人所知。这些信息是开发小分子抑制剂/激活剂所必需的,这些小分子抑制剂/激活剂可以用于
治疗与线粒体功能障碍相关的疾病,控制细胞中的代谢物水平。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gary Cecchini其他文献
Gary Cecchini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gary Cecchini', 18)}}的其他基金
Regulation of NADH: ubiquinone oxidoreductase (complex *
NADH 的调节:泛醌氧化还原酶(复合物 *
- 批准号:
6548756 - 财政年份:2002
- 资助金额:
-- - 项目类别:
相似国自然基金
新型F-18标记香豆素衍生物PET探针的研制及靶向Alzheimer's Disease 斑块显像研究
- 批准号:81000622
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
阿尔茨海默病(Alzheimer's disease,AD)动物模型构建的分子机理研究
- 批准号:31060293
- 批准年份:2010
- 资助金额:26.0 万元
- 项目类别:地区科学基金项目
跨膜转运蛋白21(TMP21)对引起阿尔茨海默病(Alzheimer'S Disease)的γ分泌酶的作用研究
- 批准号:30960334
- 批准年份:2009
- 资助金额:22.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Pathophysiological mechanisms of hypoperfusion in mouse models of Alzheimer?s disease and small vessel disease
阿尔茨海默病和小血管疾病小鼠模型低灌注的病理生理机制
- 批准号:
10657993 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
- 批准号:
10381163 - 财政年份:2022
- 资助金额:
-- - 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10531959 - 财政年份:2022
- 资助金额:
-- - 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10700991 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Interneurons as early drivers of Huntington´s disease progression
中间神经元是亨廷顿病进展的早期驱动因素
- 批准号:
10518582 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Interneurons as Early Drivers of Huntington´s Disease Progression
中间神经元是亨廷顿病进展的早期驱动因素
- 批准号:
10672973 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
- 批准号:
10585925 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Oligodendrocyte heterogeneity in Alzheimer' s disease
阿尔茨海默病中的少突胶质细胞异质性
- 批准号:
10180000 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Serum proteome analysis of Alzheimer´s disease in a population-based longitudinal cohort study - the AGES Reykjavik study
基于人群的纵向队列研究中阿尔茨海默病的血清蛋白质组分析 - AGES 雷克雅未克研究
- 批准号:
10049426 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Repurposing drugs for Alzheimer´s disease using a reverse translational approach
使用逆翻译方法重新利用治疗阿尔茨海默病的药物
- 批准号:
10295809 - 财政年份:2021
- 资助金额:
-- - 项目类别: