Spinal circuits for sensorimotor integration and interlimb coordination during locomotion
运动过程中用于感觉运动整合和肢体间协调的脊髓回路
基本信息
- 批准号:10267168
- 负责人:
- 金额:$ 33.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-21 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAnatomyAnimalsBehavioralBrain StemClinical ResearchCollaborationsComb animal structureComputer ModelsContralateralCutaneousDegenerative DisorderElderlyElectrophysiology (science)EquilibriumExcisionExperimental ModelsFeedbackFiberFoundationsFutureGaitGene DeliveryHindlimbImpairmentIndividualInterneuronsIpsilateralKnowledgeLimb structureLiteratureLocal AnestheticsLocomotionMethodsModelingMotor ActivityMotor NeuronsMusMuscleMusculoskeletalMusculoskeletal SystemMutant Strains MiceNeural Network SimulationNeuronsPathway interactionsPatternPattern FormationPeripheral NervesPhasePhase TransitionPopulationProcessPublic HealthRecoveryReflex actionResearch PersonnelRestRoleSensorySignal TransductionSpeedSpinalSpinal CordSpinal cord injurySurfaceSyndromeSystemTestingVirusWild Type MouseWorkbasebiomechanical modelconnectomedesignexperimental studyimprovedin vivoinsightinterdisciplinary approachkinematicslocomotor controlmotor disordermouse geneticsmouse modelmultidisciplinaryneural circuitneural modelneuromechanismneuroregulationnovelpredictive modelingrehabilitation strategyrelating to nervous systemresponsesomatosensorytool
项目摘要
Somatosensory feedback from the limbs is essential for locomotion and its recovery after spinal cord injury. To achieve
stable locomotion, the spinal cord needs to process afferent feedback signals and properly adjust muscle activation and
interlimb coordination. Crossed-reflex pathways, specifically, are important for gait stability and balance, which are
impaired in various motor disorders and in the elderly. Recently, significant progress has been made in decoding the
organization and function of the central spinal locomotor circuitry and its brainstem command system. But the interactions
of somatosensory feedback with the spinal circuitry during locomotion have yet to be understood on the same level of detail.
In this project we propose to address this gap of knowledge by combing mouse genetics, in vivo electrophysiology, and
behavioral analyses with computational modeling of spinal circuits and the musculoskeletal system to systematically dissect
sensory afferent connectivity to the locomotor circuitry, including genetically identified neuron populations, and their
function in interlimb coordination. Studying the organization of crossed reflexes and their interactions with spinal locomotor
circuitry will provide critical information for rehabilitative strategies. This multidisciplinary project will be performed in
close interactive collaboration between two investigators with strong and complementary expertise in computational (Simon
Danner, PI) and experimental studies of neural control of locomotion (Turgay Akay, Co-PI). The project has the following
three aims: (1) Delineate the involvement of multiple spinal interneurons in the processing of sensory information and
interlimb coordination by studying crossed reflexes at rest and during locomotion; (2) Design a predictive computational
model of the spinal locomotor circuitry and its interactions with the mouse musculoskeletal system; (3) Integrate modeling
and experimentation to uncover underlying neural mechanisms. The model will be used to derive informative predictions
that will then be tested experimentally. This process has the advantage of providing an explicit and consistent theoretical
framework for experimentation, thereby reducing the number of necessary experiments while increasing the information
gained per experiment. In summary, the proposed multidisciplinary approach is based on state-of-art experimental and
modeling methods and will provide important and novel insights into the neural organization of the spinal locomotor
circuitry responsible for sensorimotor integration and interlimb coordination during locomotion that cannot be obtained by
experimentation or modeling alone.
肢体的体感反馈对于脊髓损伤后的运动及其恢复是必不可少的。要实现
稳定的运动,脊髓需要处理传入反馈信号,并适当调整肌肉激活和
四肢间的协调。交叉反射路径对于步态的稳定性和平衡性尤其重要,这是
在各种运动障碍和老年人中受损。最近,在译码方面取得了重大进展
中央脊髓运动回路及其脑干指挥系统的组织和功能。但这种互动
在运动过程中,躯体感觉反馈与脊髓回路之间的关系还没有在相同的细节水平上被理解。
在这个项目中,我们建议通过结合小鼠遗传学、活体电生理学和
行为分析与脊柱环路和肌肉骨骼系统的计算建模,以系统剖析
感觉传入连接到运动回路,包括遗传识别的神经元群体,及其
在四肢间协调中发挥作用。交叉反射的组织及其与脊髓运动相互作用的研究
电路将为康复策略提供关键信息。这一多学科项目将在
在计算方面具有强大和互补专业知识的两名研究人员之间的密切互动合作(西蒙
Danner,Pi)和运动神经控制的实验研究(Turgay Akay,Co-Pi)。该项目具有以下内容
三个目标:(1)描述多个脊髓中间神经元参与感觉信息的处理和
通过研究静息和运动时的交叉反射来研究肢体间的协调;(2)设计一种预测性计算
脊髓运动回路模型及其与小鼠肌肉骨骼系统的相互作用;(3)集成建模
以及揭示潜在神经机制的实验。该模型将被用来得出信息性预测
然后将进行实验测试。这一过程的优点是提供了明确和一致的理论
实验框架,从而减少了必要的实验次数,同时增加了信息
每次实验所获得的收益。总而言之,拟议的多学科方法基于最先进的实验和
建模方法,将为脊髓运动的神经组织提供重要和新颖的见解
运动过程中负责感觉运动整合和肢体间协调的回路,不能通过
单独进行实验或建模。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon Michael Danner其他文献
Simon Michael Danner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon Michael Danner', 18)}}的其他基金
Propriopsinal neuron function in normal and post-SCI locomotion
正常和 SCI 后运动中的本体视神经元功能
- 批准号:
10369724 - 财政年份:2021
- 资助金额:
$ 33.73万 - 项目类别:
Propriopsinal neuron function in normal and post-SCI locomotion
正常和 SCI 后运动中的本体视神经元功能
- 批准号:
10563171 - 财政年份:2021
- 资助金额:
$ 33.73万 - 项目类别:
Spinal circuits for sensorimotor integration and interlimb coordination during locomotion
运动过程中用于感觉运动整合和肢体间协调的脊髓回路
- 批准号:
10665730 - 财政年份:2020
- 资助金额:
$ 33.73万 - 项目类别:
Spinal circuits for sensorimotor integration and interlimb coordination during locomotion
运动过程中用于感觉运动整合和肢体间协调的脊髓回路
- 批准号:
10436335 - 财政年份:2020
- 资助金额:
$ 33.73万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 33.73万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 33.73万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 33.73万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 33.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 33.73万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 33.73万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 33.73万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 33.73万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 33.73万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 33.73万 - 项目类别:
Studentship