Development of a Mobile Health Personalized Physiologic Analytics Tool for Pediatric Patients with Sepsis

为脓毒症儿科患者开发移动健康个性化生理分析工具

基本信息

  • 批准号:
    10268409
  • 负责人:
  • 金额:
    $ 17.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-10 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Project Summary Sepsis, defined as life-threatening organ dysfunction caused by a dysregulated host response to infection, encompasses a continuum that ranges from sepsis to severe sepsis, septic shock, multiple organ dysfunction syndrome (MODS) and eventually death if untreated. Sepsis is the leading cause of child mortality worldwide, with most of these deaths occurring in low and middle-income countries (LMICs) yet few clinical tools have been developed for identifying, monitoring, or managing septic children in LMICs. There is immense potential for novel clinical tools that can help clinicians more rapidly identify children with advanced stages of sepsis (severe sepsis, septic shock and MODS), who are at highest risk for decompensation and death. Mobile health (mHealth) tools, wearable devices, and artificial intelligence techniques have rapidly proliferated for a multitude of medical applications and could serve to bridge the gap in care of critically ill patients in LMIC settings. By enabling the detection of subtle physiologic changes indicating clinical deterioration, these tools may allow clinicians to intervene earlier, better direct care, and allocate scarce resources, all without the need for advanced laboratory diagnostics or critical care infrastructure. Furthermore, remote monitoring capabilities may also prove highly valuable in improving patient care and protecting the safety of healthcare workers during times of infectious disease outbreaks such as from novel coronavirus 2019 (COVID-19). This proposed research will develop a context-appropriate mHealth tool linking continuous physiologic data obtained from a wearable device with a novel machine learning approach known as personalized physiologic analytics (PPA) run on a standard smartphone to provide clinicians with accurate assessments of sepsis severity and mortality risk in septic children admitted to the Dhaka Hospital of the International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b). Formative research among clinicians at icddr,b will be used to develop this mHealth tool incorporating the PPA algorithm with a clinical decision support and alert system for use by front-line clinicians. Finally, the tool’s feasibility, usability, and accuracy for detection of sepsis severity and MODS will be validated in a new population of pediatric patients with sepsis. Knowledge gained from this study will greatly advance the evidence base for the use of mHealth tools and artificial intelligence techniques to help clinicians worldwide better care for critically ill children in LMIC settings earlier in the course of their disease, thereby reducing morbidity and mortality from sepsis. The results of this investigational research will be used to inform a multi-center clinical trial which would seek to assess the impact of using this mHealth tool on clinical outcomes as well as the cost-effectiveness of this tool. This tool may also provide an effective means of assessing patient responses to various therapeutic interventions via continuous physiologic monitoring in future clinical trials. The proposed initiatives will also build a base of technical and professional expertise at icddr,b in mHealth research capacity and user-centered design.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adam Carl Levine其他文献

Impact of ultrasound on management for dyspnea presentations in a Rwandan emergency department
  • DOI:
    10.1186/s13089-019-0133-8
  • 发表时间:
    2019-08-28
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Olivier Felix Umuhire;Michael B. Henry;Adam Carl Levine;Giles N. Cattermole;Patricia Henwood
  • 通讯作者:
    Patricia Henwood

Adam Carl Levine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adam Carl Levine', 18)}}的其他基金

Development of a Mobile Health Personalized Physiologic Analytics Tool for Pediatric Patients with Sepsis
为脓毒症儿科患者开发移动健康个性化生理分析工具
  • 批准号:
    10671864
  • 财政年份:
    2021
  • 资助金额:
    $ 17.87万
  • 项目类别:
Development of a Mobile Health Personalized Physiologic Analytics Tool for Pediatric Patients with Sepsis
为脓毒症儿科患者开发移动健康个性化生理分析工具
  • 批准号:
    10472047
  • 财政年份:
    2021
  • 资助金额:
    $ 17.87万
  • 项目类别:
Development of a novel mobile health tool for age-specific dehydration assessment and management in patients with diarrheal disease
开发一种新型移动健康工具,用于腹泻病患者的特定年龄脱水评估和管理
  • 批准号:
    10202572
  • 财政年份:
    2018
  • 资助金额:
    $ 17.87万
  • 项目类别:
Development of a novel mobile health tool for age-specific dehydration assessment and management in patients with diarrheal disease
开发一种新型移动健康工具,用于腹泻病患者的特定年龄脱水评估和管理
  • 批准号:
    10431875
  • 财政年份:
    2018
  • 资助金额:
    $ 17.87万
  • 项目类别:
Evaluation of Management Strategies for Maximizing Supportive Care for Patients with Ebola Virus Disease
评估埃博拉病毒病患者最大限度支持护理的管理策略
  • 批准号:
    9369313
  • 财政年份:
    2017
  • 资助金额:
    $ 17.87万
  • 项目类别:
Assessment of Dehydration in Children with Diarrhea in Resource-Limited Settings
资源有限环境下腹泻儿童脱水的评估
  • 批准号:
    8548427
  • 财政年份:
    2012
  • 资助金额:
    $ 17.87万
  • 项目类别:
Assessment of Dehydration in Children with Diarrhea in Resource-Limited Settings
资源有限环境下腹泻儿童脱水的评估
  • 批准号:
    8692494
  • 财政年份:
    2012
  • 资助金额:
    $ 17.87万
  • 项目类别:
Assessment of Dehydration in Children with Diarrhea in Resource-Limited Settings
资源有限环境下腹泻儿童脱水的评估
  • 批准号:
    9281928
  • 财政年份:
    2012
  • 资助金额:
    $ 17.87万
  • 项目类别:
Assessment of Dehydration in Children with Diarrhea in Resource-Limited Settings
资源有限环境下腹泻儿童脱水的评估
  • 批准号:
    8435887
  • 财政年份:
    2012
  • 资助金额:
    $ 17.87万
  • 项目类别:

相似海外基金

CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
  • 批准号:
    2236926
  • 财政年份:
    2023
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Continuing Grant
Artificial intelligence algorithms to predict risk of injury in racehorses.
预测赛马受伤风险的人工智能算法。
  • 批准号:
    LP210200798
  • 财政年份:
    2023
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Linkage Projects
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221742
  • 财政年份:
    2022
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Standard Grant
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
  • 批准号:
    2765246
  • 财政年份:
    2022
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Studentship
The 'risk of risk': remodelling artificial intelligence algorithms for predicting child abuse.
“风险中的风险”:重塑人工智能算法以预测虐待儿童行为。
  • 批准号:
    ES/R00983X/2
  • 财政年份:
    2022
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Research Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221741
  • 财政年份:
    2022
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Standard Grant
Developing a platform for deep phenotyping of heart failure with preserved ejection fraction using raw, widely-available, multi-modality data and artificial intelligence algorithms
使用原始、广泛可用的多模态数据和人工智能算法,开发一个对射血分数保留的心力衰竭进行深度表型分析的平台
  • 批准号:
    10683803
  • 财政年份:
    2022
  • 资助金额:
    $ 17.87万
  • 项目类别:
Early-assymptomatic-dementia prediction based on a white-matter biomarker using Artificial Intelligence algorithms
使用人工智能算法基于白质生物标志物的早期无症状痴呆症预测
  • 批准号:
    460558
  • 财政年份:
    2022
  • 资助金额:
    $ 17.87万
  • 项目类别:
Concluding 50 Years of Research in Wireless Communications: Algorithms for Artificial Intelligence and Optimization in Networks Beyond 5G and Thereafter
总结无线通信 50 年的研究:5G 及以后网络中的人工智能和优化算法
  • 批准号:
    RGPIN-2022-04417
  • 财政年份:
    2022
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Discovery Grants Program - Individual
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
  • 批准号:
    10544772
  • 财政年份:
    2022
  • 资助金额:
    $ 17.87万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了