Roles of m6A mRNA Methylation in Innate Immunity
m6A mRNA 甲基化在先天免疫中的作用
基本信息
- 批准号:10268233
- 负责人:
- 金额:$ 40.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-22 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAdenosineBacterial InfectionsBindingBiological ProcessBiologyCause of DeathClinicalDataDevelopmentFeedbackGenetic TranscriptionGenetic TranslationGoalsGram-Negative Bacterial InfectionsHypersensitivityImmune responseImpairmentIn VitroInfectionInflammatoryIntensive Care UnitsLearningLipopolysaccharidesMacrophage ActivationMediatingMemoryMessenger RNAMetabolismMethylationMethyltransferaseModelingModificationMolecularMusMutant Strains MiceMyeloid CellsNF-kappa BNatural ImmunityOrganPathway interactionsPatientsPersonal SatisfactionPhysiologyPlayProductionProteinsReaderRegulationResolutionRoleSepsisSerumSiteStressSuppressor of Cytokine Signaling Family ProteinTissuesTranscriptTranslationsbiological adaptation to stresscecal ligation puncturechemokinecytokinecytokine release syndromegenetic informationin vitro Modelin vivomRNA StabilitymRNA Transcript Degradationmacrophagemethyl groupmortalityresponseseptic
项目摘要
PROJECT SUMMARY/ABSTRACT
Post-transcriptional modifications of mRNA have emerged as a central regulatory mechanism in genetic
information flow. N6-methyladenosine (m6A) is the most abundant post-transcriptional modification in
eukaryotic mRNAs. m6A mRNA methylation is reversible and dynamically regulated by writers, erasers and
readers. Writers are methyltransferases that install the methyl group on adenosine residues, erasers are
demethylases that remove the methyl group, and readers are proteins that recognize and interact with the m6A
site. m6A methylation influences all fundamental aspects of mRNA metabolism, including mRNA processing,
stability and translation. Despite tremendous progresses, the in vivo roles of m6A mRNA methylation in
macrophage biology remains unclear. Sepsis is a major clinical problem and leading cause of death in patients
in intensive care units. Sepsis is usually caused by Gram-negative bacterial infection that triggers a fast
cytokine storm. Macrophages as the first line of defense are the predominant producer of pro-inflammatory
cytokines during infection. Proper resolution of the cytokine response is essential for the host's well-being. The
intensity and duration of cytokine storm is delicately regulated by negative feedback regulatory loops, and the
SOCS family of proteins are the central players of this feedback regulatory mechanism. We have sought to
understand the role of m6A methylation in macrophage biology by genetically targeting METTL14, a core
subunit of the m6A methyltransferase (a writer). We found that mice carrying METTL14 deletion in myeloid
cells are hypersensitive in both cecal ligation puncture (CLP)- and lipopolysaccharide (LPS)-induced sepsis
models. These tissue-specific METTL14-mutant mice produced and maintained much higher levels of serum
pro-inflammatory cytokines and suffered much higher mortality than control mice. METTL14-depleted
macrophages produced and sustained much higher levels of pro-inflammatory cytokines than the control
macrophages, and the underlying cause is that METTL14 deletion impairs SOCS1 induction in macrophages
following bacterial infection or LPS challenge. Our data support the hypothesis that m6A methylation plays a
critical role in controlling the intensity and resolution of cytokine storm in sepsis by increasing Socs1 mRNA
stability and translation. Our data strongly suggest that LPS or bacterial infection activates the NF-κB pathway
that stimulates Socs1 mRNA transcription; LPS/bacterial infection further increases Socs1 m6A methylation by
promoting FTO (an eraser) mRNA degradation, and then YTHDF1 (a reader) binds to the Socs1 m6A sites to
promote Socs1 mRNA stability and increase its translation. In this proposal we will validate that SOCS1 is an
essential METTL14 target to control macrophage activation in septic response using in vivo and in vitro models
(Aim 1), validate that YTHDF1 is a critical reader to promote Socs1 mRNA stability and translation in septic
response (Aim 2), and validate that FTO is a critical eraser whose mRNA degradation promotes Socs1 m6A
methylation and greatly contributes to negative feedback control of macrophage activation (Aim 3).
项目摘要/摘要
基因转录后修饰是基因表达的一种重要调控机制
信息流。N6-甲基腺苷(M6A)是生物体内含量最丰富的转录后修饰
真核生物mRNAs。M6A mRNA甲基化是可逆的,并受编写器、擦除器和
读者。写入者是在腺苷残基上安装甲基的甲基转移酶,擦除器是
去除甲基的去甲基酶和阅读器是识别M6A并与其相互作用的蛋白质
地点。M6A甲基化影响信使核糖核酸代谢的所有基本方面,包括信使核糖核酸的处理,
稳定性和平移性。尽管取得了巨大的进展,但m6A mRNA甲基化在体内的作用
巨噬细胞的生物学尚不清楚。脓毒症是一种主要的临床问题,也是导致患者死亡的主要原因。
在重症监护室。败血症通常是由革兰氏阴性细菌感染引起的,这种感染会引发快速
细胞因子风暴。巨噬细胞作为第一道防线是促炎因子的主要产生细胞。
感染过程中的细胞因子。细胞因子反应的正确解决对宿主的健康至关重要。这个
细胞因子风暴的强度和持续时间由负反馈调节环路微妙地调节,并且
SOCS家族蛋白是这一反馈调控机制的核心角色。我们一直在努力
通过基因靶向核心基因METTL14了解m6A甲基化在巨噬细胞生物学中的作用
M6A甲基转移酶的亚单位(写入者)。我们发现携带髓系METTL14缺失的小鼠
盲肠结扎穿刺术(CLP)和脂多糖(LPS)诱导的脓毒症中细胞都是超敏的
模特们。这些组织特异性的METTL14突变小鼠产生并维持了更高的血清水平
致炎细胞因子,死亡率明显高于对照组小鼠。METTL14-耗尽
巨噬细胞产生并维持比对照组高得多的促炎细胞因子水平
其根本原因是METTL14缺失削弱了巨噬细胞SOCS1的诱导
细菌感染或内毒素攻击后。我们的数据支持这样一种假设,即m6A甲基化在
上调Socs1基因在控制脓毒症细胞因子风暴强度和消退中的关键作用
稳定性和平移性。我们的数据有力地表明,内毒素或细菌感染激活了NF-κB途径
刺激Socs1基因转录;细菌感染进一步增加Socs1 m6A甲基化
促进FTO(橡皮擦)mRNA降解,然后YTHDF1(阅读器)与Socs1 m6A位点结合
促进SOCS1mRNA的稳定性,增加其翻译。在本提案中,我们将验证SOCS1是
利用体内和体外模型控制脓毒症反应中巨噬细胞激活的Essential METTL14靶点
(目标1),验证YTHDF1是促进脓毒症Socs1 mRNA稳定性和翻译的关键读者
响应(目标2),并验证FTO是其mRNA降解促进SOCS1 m6A的关键橡皮擦
甲基化和对巨噬细胞激活的负反馈控制有很大贡献(目标3)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yan Chun LI其他文献
Yan Chun LI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yan Chun LI', 18)}}的其他基金
Roles of m6A mRNA Methylation in Innate Immunity
m6A mRNA 甲基化在先天免疫中的作用
- 批准号:
10676807 - 财政年份:2020
- 资助金额:
$ 40.5万 - 项目类别:
Roles of m6A mRNA Methylation in Innate Immunity
m6A mRNA 甲基化在先天免疫中的作用
- 批准号:
10462625 - 财政年份:2020
- 资助金额:
$ 40.5万 - 项目类别:
(PQA1) Mechanism of Vitamin D Chemoprevention Against Colon Cancer
(PQA1) 维生素 D 化学预防结肠癌的机制
- 批准号:
8590842 - 财政年份:2013
- 资助金额:
$ 40.5万 - 项目类别:
(PQA1) Mechanism of Vitamin D Chemoprevention Against Colon Cancer
(PQA1) 维生素 D 化学预防结肠癌的机制
- 批准号:
8724458 - 财政年份:2013
- 资助金额:
$ 40.5万 - 项目类别:
(PQA1) Mechanism of Vitamin D Chemoprevention Against Colon Cancer
(PQA1) 维生素 D 化学预防结肠癌的机制
- 批准号:
8912882 - 财政年份:2013
- 资助金额:
$ 40.5万 - 项目类别:
New drug VS-110 for treating inflammatory bowel diseases
治疗炎症性肠病新药VS-110
- 批准号:
8586283 - 财政年份:2013
- 资助金额:
$ 40.5万 - 项目类别:
(PQA1) Mechanism of Vitamin D Chemoprevention Against Colon Cancer
(PQA1) 维生素 D 化学预防结肠癌的机制
- 批准号:
9142043 - 财政年份:2013
- 资助金额:
$ 40.5万 - 项目类别:
Novel drug VS-105 for treatment of diabetic nephropathy
治疗糖尿病肾病新药VS-105
- 批准号:
8313361 - 财政年份:2012
- 资助金额:
$ 40.5万 - 项目类别:
Cardiovascular Effect of the Vitamin D Endocrine System.
维生素 D 内分泌系统对心血管的影响。
- 批准号:
7790591 - 财政年份:2007
- 资助金额:
$ 40.5万 - 项目类别:
Cardiovascular Effect of the Vitamin D Endocrine System.
维生素 D 内分泌系统对心血管的影响。
- 批准号:
7393847 - 财政年份:2007
- 资助金额:
$ 40.5万 - 项目类别:
相似国自然基金
基于ADK/Adenosine调控DNA甲基化探讨“利湿化瘀通络”法对2型糖尿病肾病足细胞裂孔膜损伤的干预机制研究
- 批准号:82074359
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
细胞外腺苷(Adenosine)作为干细胞旁分泌因子的生物学鉴定和功能分析
- 批准号:81570244
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
Adenosine诱导A1/A2AR稳态失衡启动慢性低灌注白质炎性损伤及其机制
- 批准号:81171113
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Targeting the A2B Adenosine Receptor for Immunoprevention of Pancreatic Cancer
靶向 A2B 腺苷受体用于胰腺癌的免疫预防
- 批准号:
10929664 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Exploring the role of adenosine A2A receptors in Schizophrenia using opto-pharmacologically controlled allosteric modulation.
利用光药理学控制的变构调节探索腺苷 A2A 受体在精神分裂症中的作用。
- 批准号:
23K14685 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Role of Adenosine Kinase in Mixed Diastolic Heart Failure and Alzheimer Disease
腺苷激酶在混合性舒张性心力衰竭和阿尔茨海默病中的作用
- 批准号:
10679989 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Allostery-driven G protein selectivity in the adenosine A1 receptor
腺苷 A1 受体中变构驱动的 G 蛋白选择性
- 批准号:
BB/W016974/1 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Research Grant
Investigation of new test methods for adenosine-sensitive atrioventricular block
腺苷敏感型房室传导阻滞新检测方法的探讨
- 批准号:
23K07566 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Probing the role of adenosine pathway in SIV pathogenesis
探讨腺苷途径在 SIV 发病机制中的作用
- 批准号:
10760676 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
The role of A1 adenosine receptor signaling in the decline of S. pneumoniae killing by neutrophils in vaccinated aged hosts
A1 腺苷受体信号传导在疫苗接种老年宿主中中性粒细胞杀伤肺炎链球菌下降中的作用
- 批准号:
10605737 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Adenosine triphosphate as a master variable for biomass in the oceanographic context
三磷酸腺苷作为海洋学背景下生物量的主变量
- 批准号:
2319114 - 财政年份:2023
- 资助金额:
$ 40.5万 - 项目类别:
Standard Grant
Late-Stage Functionalisation of Cyclic Guanosine Monophosphate - Adenosine Monophosphate
环单磷酸鸟苷-单磷酸腺苷的后期功能化
- 批准号:
2751533 - 财政年份:2022
- 资助金额:
$ 40.5万 - 项目类别:
Studentship
Postnatal development of adenosine kinase in the brainstem network that controls breathing
控制呼吸的脑干网络中腺苷激酶的出生后发育
- 批准号:
573323-2022 - 财政年份:2022
- 资助金额:
$ 40.5万 - 项目类别:
University Undergraduate Student Research Awards