Universal Metabolite Tagging
通用代谢物标签
基本信息
- 批准号:10240660
- 负责人:
- 金额:$ 44.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityBindingBioinformaticsCarbonCardiacCationsChargeChemicalsClutteringsComputer ModelsCredentialingDataData AnalysesData SetDeuteriumDiabetes MellitusDigestive System DisordersDiseaseEvaluationExclusionGeographyHeart DiseasesHumanHuman bodyHydrophobicityInformaticsInjectionsInvestigationIslets of LangerhansIsotope LabelingIsotopesLaboratoriesMalignant NeoplasmsMass Spectrum AnalysisMetabolismMethodsModelingNoiseNutrientOutcomePathway interactionsPerformanceProcessProtocols documentationProtonsPunch BiopsyResearch PersonnelResolutionSaltsSamplingSchemeSeriesSignal TransductionSodium ChlorideSolventsStructureSystemTechnologyValidationVertebral columnadductbasebioinformatics toolcostdata complexitydata qualityfunctional groupimprovedinnovative technologieslarge datasetsliquid chromatography mass spectrometrymetabolomemetabolomicsnovelpiperidineresponsestemtargeted biomarkertechnology research and developmenttherapeutic targetvirtual
项目摘要
Project Summary/Abstract
A major impediment to mass spectrometry based metabolomics unleashing its full potential is the
complexity of the data which is cluttered with solvent and salt adducts. This is called degeneracy
and gives multiple peaks from one analytes which diminish analyte signal and need to be
discarded using bioinformatic tools. In response to PAR-17-045 which calls for “focused
technology research and development,” a multi-PI team will develop a series of three distinct
chemical tagging platforms based on our recent universal proton affinity tags. These tags react
with virtually all metabolites and eliminate degeneracy, increase signal, allow for multi-charging,
and analysis of ultra-small samples. Aim 1 will develop a universal proton affinity tagging scheme
with multi-dimensional liquid chromatography mass spectrometry platform which allows for pre-
concentrating all metabolites and minimal degeneracy. Aim 2 will synthesize and develop two
sets of isotope labeled tags for ~$2/sample. The first set are isobaric tags for targeted analyses
using low resolution mass spectrometry. The second set are neucode based tags for high
resolution mass spectrometry capable of analyzing up to 60 samples simultaneously. Aim 3 uses
a novel tag which fragments across the carbon-carbon backbone to allow identification of new
metabolites using fragmentation modeling. In the final aim of the proposal we will leverage the
increase in sensitivity and multiplexing of the previous aims to analyze small samples. The
methods developed here will be evaluated for robustness and transferability by comparing
performance across multiple independent laboratories. The outcomes for this proposal are three
distinct technologies which solve multiple critical barriers in metabolomics.
项目总结/摘要
基于质谱的代谢组学释放其全部潜力的主要障碍是
数据的复杂性与溶剂和盐加合物混杂。这叫做简并
并从一种分析物给出多个峰,这减少了分析物信号,
使用生物信息学工具丢弃。根据PAR-17-045的要求,
技术研发,“一个多PI团队将开发一系列三个不同的
基于我们最近的通用质子亲和标签的化学标签平台。这些标签反应
与几乎所有的代谢物和消除简并,增加信号,允许多充电,
和超小样品的分析。AIM 1将开发一个通用的质子亲和标记方案
与多维液相色谱质谱平台,允许预-
浓缩所有代谢物和最小的简并性。目标2将综合并开发两个
同位素标记的标签套,约2美元/样品。第一组是用于目标分析的等压标签
使用低分辨率质谱法。第二组是基于neucode的标签,用于高
分辨率质谱仪能够同时分析多达60个样品。Aim 3用途
一种新的标签,其在碳-碳主链上断裂,以允许识别新的
代谢物使用碎片建模。在提案的最终目标中,我们将利用
增加灵敏度和多路复用的目的是分析小样品。的
本文所开发的方法将通过比较来评估其稳健性和可移植性
多个独立实验室的性能。该提案的结果有三个
这些独特的技术解决了代谢组学中的多个关键障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher K Arnatt其他文献
41 - Lysophosphatidylserine/GPR34 Signaling in Neuropathic Pain
41 - 神经病理性疼痛中的溶血磷脂酰丝氨酸/GPR34 信号通路
- DOI:
10.1016/j.jpain.2025.104837 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:4.000
- 作者:
Janaine P. Oliveira;Luigi Giancotti;Timothy Doyle;Isaac Readnour;Christopher K Arnatt;John Walker;Daniela Salvemini - 通讯作者:
Daniela Salvemini
Christopher K Arnatt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher K Arnatt', 18)}}的其他基金
Uncovering the roles of oxysterols in neuropathic pain
揭示氧甾醇在神经性疼痛中的作用
- 批准号:
10659247 - 财政年份:2022
- 资助金额:
$ 44.04万 - 项目类别:
Uncovering the roles of oxysterols in neuropathic pain
揭示氧甾醇在神经性疼痛中的作用
- 批准号:
10504409 - 财政年份:2022
- 资助金额:
$ 44.04万 - 项目类别:
相似海外基金
Applications of Deep Learning for Binding Affinity Prediction
深度学习在结合亲和力预测中的应用
- 批准号:
2887848 - 财政年份:2023
- 资助金额:
$ 44.04万 - 项目类别:
Studentship
Metalloenzyme binding affinity prediction with VM2
使用 VM2 预测金属酶结合亲和力
- 批准号:
10697593 - 财政年份:2023
- 资助金额:
$ 44.04万 - 项目类别:
Building a binding community - Capacity and capability for affinity and kinetic analysis of molecular interactions.
建立结合社区 - 分子相互作用的亲和力和动力学分析的能力和能力。
- 批准号:
MR/X013227/1 - 财政年份:2022
- 资助金额:
$ 44.04万 - 项目类别:
Research Grant
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长程氨基酸取代引起的结合亲和力/特异性的变化
- 批准号:
10797940 - 财政年份:2022
- 资助金额:
$ 44.04万 - 项目类别:
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
- 批准号:
10502084 - 财政年份:2022
- 资助金额:
$ 44.04万 - 项目类别:
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
- 批准号:
10707418 - 财政年份:2022
- 资助金额:
$ 44.04万 - 项目类别:
Binding affinity of inositol phosphate analogs to protein toxin TcdB
磷酸肌醇类似物与蛋白质毒素 TcdB 的结合亲和力
- 批准号:
573604-2022 - 财政年份:2022
- 资助金额:
$ 44.04万 - 项目类别:
University Undergraduate Student Research Awards
Computational predictions of thermostability and binding affinity changes in enzymes
酶热稳定性和结合亲和力变化的计算预测
- 批准号:
2610945 - 财政年份:2021
- 资助金额:
$ 44.04万 - 项目类别:
Studentship
I-Corps: Physics-Based Binding Affinity Estimator
I-Corps:基于物理的结合亲和力估计器
- 批准号:
2138667 - 财政年份:2021
- 资助金额:
$ 44.04万 - 项目类别:
Standard Grant
Computational modelling and simulation of antibodies to enhance binding affinity of a potential Burkholderia pseudomallei therapeutic
抗体的计算模型和模拟,以增强潜在的鼻疽伯克霍尔德氏菌治疗剂的结合亲和力
- 批准号:
2750554 - 财政年份:2021
- 资助金额:
$ 44.04万 - 项目类别:
Studentship