Innovative technologies to transform antibiotic discovery. Project 4 Infection site-specific amplification of antimicrobial conjugates
改变抗生素发现的创新技术。
基本信息
- 批准号:10242006
- 负责人:
- 金额:$ 145.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-07 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvanced DevelopmentAftercareAnimal ModelAnti-Bacterial AgentsAntibiotic ResistanceAntibioticsAntibodiesBacteriaBacteriophagesBiodistributionBypassCell WallCell surfaceClinicClinicalClinical TrialsCollaborationsComplementDataDeath RateDevelopmentDoseDrug KineticsDrug toxicityEngineeringEnsureEnvironmentEnzymesGram-Negative BacteriaGrantHumanImageIn VitroIndividualIndustrializationInfectionInferiorIntravenousJointsLabelLeadLectinLibrariesMalignant NeoplasmsMaximum Tolerated DoseMeasuresMethodsModalityMulti-Drug ResistancePeptide HydrolasesPeptide SynthesisPharmaceutical PreparationsPolysaccharidesPreclinical TestingProcessProdrugsProductionProteinsResistanceSerumSiteSourceSpecificityStructure-Activity RelationshipSurfaceTechnologyTherapeuticThigh structureTissuesToxic effectTreatment EfficacyVariantantimicrobialantimicrobial drugantimicrobial peptidebactericideclinical translationdesigndrug candidateeconomic costflexibilityhost microbiotaimmunoregulationimprovedin vitro activityin vivoin vivo evaluationinnovative technologiesmouse modelnanomaterialsnovelnovel therapeuticspathogenpharmacokinetics and pharmacodynamicspneumonia modelpre-clinicalpreclinical trialresistance mechanismresistant strainresponsesmall moleculesoft tissuesortasesynthetic biologytargeted agenttherapy outcometherapy resistanttreatment strategy
项目摘要
ABSTRACT
Drugging Gram-negative bacteria in the clinic is an urgent unmet need due to rapidly-evolving resistant
strains, the inability of conventional antibiotics to penetrate the outer cell wall, and off-target in vivo drug toxicities.
Antimicrobial peptides (AMPs) and other small molecule antibacterial leads have shown promise in preclinical
testing for killing multi-drug resistant Gram-negative pathogens, but have faced significant challenges in clinical
translation as a result of inferior therapeutic outcomes in vivo. This proposal addresses the shortage of novel
treatment strategies for multi-drug resistant Gram-negative pathogens by exploiting the pathogen's cell surface
glycans and local environment to deliver antimicrobial payloads. Long-circulating, pro-drug constructs will be
engineered that selectively target the site of infection after systemic administration and activate in response to
proteolytic activity specific to the infected tissue microenvironment. The proposed antimicrobial agents, termed
antimicrobial conjugates (AMCs) consist of a pathogen-specific targeting agent, a microenvironment-specific
cleavable linker, and a bactericidal payload. This modular design allows the exploration of different components
to optimize the conjugate's activity. The proposed AMCs will be designed and extensively evaluated in vitro and
in animal models for toxicity and antimicrobial activity by a joint team at MIT composed of Drs. Sangeeta Bhatia,
Timothy Lu, Laura Kiessling, and Bradley Pentelute. Their labs will leverage expertise with protease-responsive
nanomaterials, synthetic biology and computational design, protein-glycan recognition processes, and
bioconjugation and rapid peptide synthesis technologies, respectively, to advance the development of AMCs.
This new therapeutic modality has several advantages: the high level of specificity for pathogen targets will
limit toxicity to host, enabling the use of less selective antimicrobial agents, the conjugates will have increased
pharmacokinetics, and the narrow spectrum activity will avoid the spread of general resistance mechanisms
between species and limit damage to the host microbiota. Completion of the project will generate lead
antimicrobial conjugates for the treatment of resistant Gram-negative infections. Collectively optimizing the
therapeutic profiles of lead compounds will identify top candidates that can be advanced for pre-clinical trials,
with the potential to deliver a therapeutic strategy that effectively bypasses acquired Gram-negative antibiotic
resistance.
摘要
由于革兰氏阴性菌的耐药性迅速演变,临床上革兰氏阴性菌的药物治疗是一个迫切的未满足的需求。
菌株,常规抗生素无法穿透外细胞壁,以及体内药物毒性脱靶。
抗菌肽(AMP)和其他小分子抗菌先导物在临床前研究中显示出前景。
测试杀死多药耐药革兰氏阴性病原体,但在临床上面临重大挑战
由于体内较差的治疗结果而导致翻译。这一建议解决了小说的短缺问题。
通过利用病原体的细胞表面治疗多药耐药革兰氏阴性病原体的策略
聚糖和局部环境来递送抗微生物有效载荷。长循环的前药构建体将是
经工程改造,在全身给药后选择性靶向感染部位,
感染组织微环境特异性的蛋白水解活性。拟议的抗菌剂,称为
抗微生物缀合物(AMC)由病原体特异性靶向剂、微环境特异性靶向剂和微环境特异性靶向剂组成。
可裂解接头和杀菌有效负载。这种模块化设计允许探索不同的组件
以优化结合物的活性。拟定的AMC将在体外进行设计和广泛评价,
麻省理工学院的Sangeeta Bhatia博士组成的一个联合小组,
Timothy Lu,Laura Kiessling,和布拉德利Pentelute.他们的实验室将利用蛋白酶反应的专业知识,
纳米材料,合成生物学和计算设计,蛋白质聚糖识别过程,
生物偶联技术和快速肽合成技术,以促进AMC的发展。
这种新的治疗方式具有几个优点:对病原体靶点的高水平特异性,
限制对宿主的毒性,使得能够使用选择性较低的抗微生物剂,缀合物将增加
药代动力学,窄谱活性将避免一般耐药机制的传播
并限制对宿主微生物群的损害。项目完成后将产生铅
用于治疗耐药性革兰氏阴性感染的抗菌缀合物。共同优化
先导化合物的治疗特性将确定可用于临床前试验的最佳候选物,
具有提供有效绕过获得性革兰氏阴性抗生素的治疗策略的潜力
阻力
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DEBORAH T HUNG其他文献
DEBORAH T HUNG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DEBORAH T HUNG', 18)}}的其他基金
Innovative technologies to transform antibiotic discovery. Project 4 Infection site-specific amplification of antimicrobial conjugates
改变抗生素发现的创新技术。
- 批准号:
10670196 - 财政年份:2019
- 资助金额:
$ 145.31万 - 项目类别:
Innovative technologies to transform antibiotic discovery. Project 1 Genomic applications to transform Gram-negative Antibiotic discovery
改变抗生素发现的创新技术。
- 批准号:
10670186 - 财政年份:2019
- 资助金额:
$ 145.31万 - 项目类别:
Innovative technologies to transform antibiotic discovery.
改变抗生素发现的创新技术。
- 批准号:
10670154 - 财政年份:2019
- 资助金额:
$ 145.31万 - 项目类别:
Innovative technologies to transform antibiotic discovery. Administrative Core
改变抗生素发现的创新技术。
- 批准号:
10670185 - 财政年份:2019
- 资助金额:
$ 145.31万 - 项目类别:
Innovative technologies to transform antibiotic discovery.
改变抗生素发现的创新技术。
- 批准号:
10242000 - 财政年份:2019
- 资助金额:
$ 145.31万 - 项目类别:
Innovative technologies to transform antibiotic discovery. Project 4 Infection site-specific amplification of antimicrobial conjugates
改变抗生素发现的创新技术。
- 批准号:
10463692 - 财政年份:2019
- 资助金额:
$ 145.31万 - 项目类别:
Innovative technologies to transform antibiotic discovery. Administrative Core
改变抗生素发现的创新技术。
- 批准号:
10463687 - 财政年份:2019
- 资助金额:
$ 145.31万 - 项目类别:
Innovative technologies to transform antibiotic discovery. Project 1 Genomic applications to transform Gram-negative Antibiotic discovery
改变抗生素发现的创新技术。
- 批准号:
10242002 - 财政年份:2019
- 资助金额:
$ 145.31万 - 项目类别:
Innovative technologies to transform antibiotic discovery. Project 1 Genomic applications to transform Gram-negative Antibiotic discovery
改变抗生素发现的创新技术。
- 批准号:
10463688 - 财政年份:2019
- 资助金额:
$ 145.31万 - 项目类别:
Innovative technologies to transform antibiotic discovery.
改变抗生素发现的创新技术。
- 批准号:
10463686 - 财政年份:2019
- 资助金额:
$ 145.31万 - 项目类别:
相似海外基金
ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
- 批准号:
10935820 - 财政年份:2023
- 资助金额:
$ 145.31万 - 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
- 批准号:
10932514 - 财政年份:2023
- 资助金额:
$ 145.31万 - 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
- 批准号:
10704845 - 财政年份:2023
- 资助金额:
$ 145.31万 - 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
- 批准号:
10709085 - 财政年份:2023
- 资助金额:
$ 145.31万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10409385 - 财政年份:2022
- 资助金额:
$ 145.31万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10710595 - 财政年份:2022
- 资助金额:
$ 145.31万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 145.31万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
- 批准号:
10710588 - 财政年份:2022
- 资助金额:
$ 145.31万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10788051 - 财政年份:2022
- 资助金额:
$ 145.31万 - 项目类别: