Phytochromes: Structural Perspectives on Photoactivation and Signaling
光敏色素:光活化和信号传导的结构视角
基本信息
- 批准号:10242010
- 负责人:
- 金额:$ 29.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:Advanced DevelopmentAgricultureArabidopsisArchitectureBackBehaviorBilinBindingBiochemicalBiologicalBiologyBiotechnologyCollectionCoupledCryoelectron MicroscopyDeuteriumDiseaseDropsEcosystemEngineeringEnvironmentEventEvolutionFamilyGoalsGrowth and Development functionHealthHumanHydrogenInfluentialsKineticsKnowledgeLengthLifeLife Cycle StagesLightMass Spectrum AnalysisMeasuresMedicalMembrane ProteinsMethodsMissionModelingMolecular ConformationN-terminalNatureOrganismOutputPaintPathway interactionsPerceptionPerformancePhotochemistryPhotonsPhotoreceptorsPhysiological ProcessesPhytochromePlant ComponentsPlantsProcessProtein IsoformsProteinsReagentRecombinantsResearchResolutionSeedsSignal TransductionSourceStructureSurfaceSynchrotronsTemperatureTemperature SenseTimeTissue imagingTranscription RepressorUnited States National Institutes of HealthVariantWorkX-Ray Crystallographyabsorptionbasechromophoreconformerdimerdriving forcefluorophorehuman pathogenimprovedlight intensitymembermicrobialmicroorganismnanonoveloptogeneticsoxidationparticlepathogenphotoactivationphyA phytochromeplant growth/developmentprotein-histidine kinasereaction rateresponsethree dimensional structurethree-dimensional modelingtooltranscription factorx-ray free-electron laser
项目摘要
PROJECT SUMMARY
Most organisms employ an array of photoreceptors to detect their light environment. Arguably the most influential are the
phytochromes (Phys), a diverse group essential for plant growth and development, and widely distributed in many
bacterial, fungal, and algal genera. By reversible photointerconversion of their bilin chromophores between a red light-
absorbing Pr state and a far-red light-absorbing Pfr state, Phys act as photoswitches in various signaling cascades
responsive to light intensity, direction, duration, and spectral quality. Moreover, through the thermal reversion of Pfr back
to Pr, some Phys sense temperature through enthalpic effects on the rate of this reaction, and possibly perceive time via
the nighttime depletion of Pfr. The cumulative effects of this Pr/Pfr interconversion impact numerous physiological
processes important to agriculture and the biology of harmful plant and human pathogens. In addition, their unique
photochemistries have recently provided invaluable optogenetic tools, including novel fluorophores for tissue imaging,
and engineered photoswitches that can regulate cellular events with remarkable temporal and spatial precision.
Recently, we and others have made great strides in understanding how Phys signal through studies on the photosensing
region. An emerging toggle model posits that a light-triggered isomerization of the bilin yields angstrom-scale
rearrangements within the bilin-binding pocket that is ultimately transduced into large-scale conformational changes in
the dimeric photoreceptor. While the model helps clarify gross changes required for endstate conversion, the
intermediates of photoexcitation and ensuing structural changes necessary for a signaling-competent Pfr state are
uncertain. It is also unclear how well the model applies to plant Phys given their distinctive modular architectures.
The objective of this proposal is to complete this picture through continued structural and biochemical analyses of
representative Phys in their Pr and Pfr states, and in combination with their downstream effectors. Specific aims are to:
(1) use x-ray crystallography and cryo-electron microscopy to develop more comprehensive structures of plant and
bacterial Phys, including models of full-length dimeric photoreceptors with theirs signal output modules; (2) define how
Phys transduce the light signal through association with their downstream partners; (3) exploit serial femtosecond x-ray
crystallography to structurally define the intermediates generated after photon absorption; (4) use steady-state and surface
mapping methods to better understand the protein surface dynamics during photoconversion; and (5) appreciate how
diversity within the plant Phy family is used to enhance thermal perception through the biochemical and structural
analyses of the PhyB isoform that employs a predicted intrinsically disorder region at its N-terminus to sense temperature.
Taken together, this project will provide an essential framework to better appreciate the structure, allosteric mechanism,
and evolution of the Phy superfamily. Its anticipated results should help elucidate how microorganisms and plants sense
light, temperature, and possibly time, which could have important ramifications for improving the agricultural
performance of crop plants, understanding microbial ecosystems, controlling the life cycle of medically-relevant
pathogens, and enhancing the application of Phys as optogenetic reagents.
项目摘要
大多数生物体采用一系列光感受器来检测它们的光环境。可以说,最有影响力的是
光敏色素(Phys)是植物生长发育所必需的一个多样性类群,广泛分布于许多植物中,
细菌、真菌和藻类属。通过它们的胆色素发色团在红光-
吸收Pr态和吸收远红光的Pfr态,Phys在各种信号级联中充当光开关
对光的强度、方向、持续时间和光谱质量敏感。此外,通过Pfr的热回复,
对于Pr,一些Phys通过对该反应速率的双折射效应来感知温度,并且可能通过
Pfr的夜间消耗。这种Pr/Pfr相互转换的累积效应影响了许多生理功能
对农业以及有害植物和人类病原体的生物学具有重要意义的过程。此外,其独特的
光化学最近提供了宝贵的光遗传学工具,包括用于组织成像的新荧光团,
以及可以在时间和空间上精确调控细胞活动的工程光开关。
最近,我们和其他人通过对光敏的研究,在理解物理信号方面取得了很大进展。
地区一个新兴的toggle模型假定,光引发的胆色素异构化产生了埃级
胆色素结合口袋内的重排,最终转化为大规模的构象变化,
二聚体光感受器。虽然该模型有助于澄清最终状态转换所需的总体更改,
中间体的光激发和随之而来的结构变化所必需的一个信号主管Pfr状态是
不确定鉴于其独特的模块化架构,目前还不清楚该模型适用于植物Phys的效果如何。
本提案的目的是通过对以下物质的持续结构和生物化学分析,
在一些实施方案中,将代表性Phys与它们的Pr和Pfr状态组合,并与它们的下游效应物组合。具体目标是:
(1)利用X射线晶体学和低温电子显微镜研究更全面的植物结构,
细菌Phys,包括全长二聚体光感受器及其信号输出模块的模型;(2)定义如何
物理学通过与其下游伙伴的关联对光信号进行处理;(3)利用串行飞秒x射线
晶体学在结构上定义光子吸收后产生的中间体;(4)使用稳态和表面
映射方法,以更好地了解蛋白质表面动力学在光转换;和(5)欣赏如何
植物Phy家族内的多样性用于通过生物化学和结构增强热感知
PhyB同种型的分析,该同种型在其N-末端采用预测的内在无序区域来感测温度。
总之,这个项目将提供一个必要的框架,以更好地了解结构,变构机制,
和Phy超家族的进化。其预期的结果应该有助于阐明微生物和植物如何感知
光,温度,可能还有时间,这可能对改善农业生产有重要影响。
作物的性能,了解微生物生态系统,控制医学相关的生命周期,
病原体,并加强Phys作为光遗传学试剂的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RICHARD DAVID VIERSTRA其他文献
RICHARD DAVID VIERSTRA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RICHARD DAVID VIERSTRA', 18)}}的其他基金
Phytochromes: Structural Perspectives on Photoactivation and Signaling
光敏色素:光活化和信号传导的结构视角
- 批准号:
10387814 - 财政年份:2018
- 资助金额:
$ 29.26万 - 项目类别:
Phytochromes: Structural Perspectives on Photoactivation and Signaling
光敏色素:光活化和信号传导的结构视角
- 批准号:
10708835 - 财政年份:2018
- 资助金额:
$ 29.26万 - 项目类别:
Autophagic Clearance of Proteasomes and CDC48 as Models for Amyloidogenic Protein Quality Control.
蛋白酶体和 CDC48 的自噬清除作为淀粉样蛋白质量控制的模型。
- 批准号:
10676083 - 财政年份:2017
- 资助金额:
$ 29.26万 - 项目类别:
Autophagic Clearance of Proteasomes and CDC48 as Models for Amyloidogenic Protein Quality Control.
蛋白酶体和 CDC48 的自噬清除作为淀粉样蛋白质量控制的模型。
- 批准号:
10366935 - 财政年份:2017
- 资助金额:
$ 29.26万 - 项目类别:
AUTOPHAGIC CLEARANCE OF INACTIVE PROTEASOMES AND RIBOSOMES AS MODELS FOR PROTEIN QUALITY CONTROL
无活性蛋白酶体和核糖体的自噬清除作为蛋白质质量控制的模型
- 批准号:
10063879 - 财政年份:2017
- 资助金额:
$ 29.26万 - 项目类别:
相似海外基金
REU Site: Controlled Environment Agriculture (CEAfREU)
REU 站点:受控环境农业 (CEAfREU)
- 批准号:
2349765 - 财政年份:2024
- 资助金额:
$ 29.26万 - 项目类别:
Standard Grant
I-Corps: Intelligent Hydroponics Growing Platform for Sustainable Agriculture
I-Corps:可持续农业的智能水培种植平台
- 批准号:
2345854 - 财政年份:2024
- 资助金额:
$ 29.26万 - 项目类别:
Standard Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
- 批准号:
2330043 - 财政年份:2024
- 资助金额:
$ 29.26万 - 项目类别:
Cooperative Agreement
COUSIN: Crop Wild Relatives utilisation and conservation for sustainable agriculture
表弟:作物野生近缘种的利用和保护以实现可持续农业
- 批准号:
10090949 - 财政年份:2024
- 资助金额:
$ 29.26万 - 项目类别:
EU-Funded
NSF Engines: North Dakota Advanced Agriculture Technology Engine
NSF 发动机:北达科他州先进农业技术发动机
- 批准号:
2315315 - 财政年份:2024
- 资助金额:
$ 29.26万 - 项目类别:
Cooperative Agreement
In Search of Future Farmers: Comparative Research on Young People's Exit from Agriculture in Rural Indonesia, Japan and Nepal
寻找未来农民:印度尼西亚、日本和尼泊尔农村年轻人退出农业的比较研究
- 批准号:
23K22187 - 财政年份:2024
- 资助金额:
$ 29.26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Novel Biofertiliser for Sustainable Agriculture: Tackling Phosphorus Crisis
用于可持续农业的新型生物肥料:解决磷危机
- 批准号:
IM240100158 - 财政年份:2024
- 资助金额:
$ 29.26万 - 项目类别:
Mid-Career Industry Fellowships
Rural Development and Community Resiliency Through Agriculture Heritage Tourism
通过农业遗产旅游促进农村发展和社区复原力
- 批准号:
23K21819 - 财政年份:2024
- 资助金额:
$ 29.26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Arboricrop: next generation agriculture using real-time information from trees crops
Arboricrop:利用树木作物实时信息的下一代农业
- 批准号:
10087410 - 财政年份:2024
- 资助金额:
$ 29.26万 - 项目类别:
Collaborative R&D
Advancing Controlled Environment Agriculture (CEA) with Dynamic LED Lighting Systems and Artificial Intelligence
利用动态 LED 照明系统和人工智能推进受控环境农业 (CEA)
- 批准号:
BB/Z514330/1 - 财政年份:2024
- 资助金额:
$ 29.26万 - 项目类别:
Research Grant