Project 3: Modeling and Theory

项目 3:建模与理论

基本信息

  • 批准号:
    10241484
  • 负责人:
  • 金额:
    $ 53.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-25 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

Project 3 - Modeling and theory-Abstract One of the greatest challenges for a theory of brain function is the fractured nature of our experimental knowledge about neuronal circuits. The zebrafish larva offers a unique opportunity to mitigate this barrier due to the ability to interrogate whole brain activity at single neuron resolution during ethologically relevant behaviors, the availability of exhaustive genetic tools and the ability to monitor the animal’s behavior over long times. To utilize these benefits the overall project will study a battery of sensorimotor functions in the fish larva, recording its behavioral responses, the brain structures involved, and the neuronal activity at single cell resolution. The primary goal of Project 3 is to integrate findings from the disparate experimental conditions into a coherent quantitative brain wide circuit model, guiding further validation, refinement and hypothesis testing experiments. We will establish a decade long experimental-theoretical-data-processing collaboration, yielding unprecedented advances in our understanding of the functioning of whole brains in animals with complex neuronal structure and function. We will adopt a multiscale approach, summarized as follows: ​Behavioral models - ​capable of an accurate probabilistic prediction of the animal’s actions given its environment and recent behavioral history. ​Conceptual circuit models ​- initial charts identifying the brain structures involved in a given sensorimotor task and their potential projections. ​Functional circuit models ​- systematic quantitative network models, whose functional units are local populations identified through dimensionality reduction of brain wide activity traces. Importantly, this brain wide model will continuously integrate additional structures and circuits as experiments on specific tasks progress. ​Neuronal circuit models – data from perturbation and EM validation studies at the single neuron/synaptic level will be integrated into single neuron level models for specific local circuits. We will also incorporate data on action selection, multi-sensory integration, and decision making gathered in experiments of Aim 2 of the Overall Project. Model circuits will be integrated into the Multiscale Virtual Fish software platform to allow visualization and interrogation of experimental and modeling data in a common framework. Our multiscale approach will extend to the time domain. To model the brain state dependence of behavioral and neuronal functions (Overall Aim 3) we will build a hierarchical switchable model, with brain state slow dynamics at the top tier, which modulate the lower tier, ongoing fast behavioral and neuronal models (described above). We will seek to extract from our models of the fish brain and behavior general principles likely to generalize across species. This will be tested by using our modeling approach to related experiments in the rat and the fruit fly larva (Project 4), especially in the domain of brain state dynamics and the neuromodulatory control of behavior and sensorimotor processing.
项目3 -建模和理论-抽象 大脑功能理论面临的最大挑战之一是我们关于大脑功能的实验知识的破碎性。 神经回路斑马鱼幼虫提供了一个独特的机会,以减轻这一障碍,由于有能力询问 在行为学相关行为期间,单个神经元分辨率下的全脑活动, 基因工具和长期监控动物行为的能力。为了利用这些好处,整个项目 将研究鱼幼虫的一系列感觉运动功能,记录其行为反应、大脑结构 参与,和单细胞分辨率的神经元活动。项目3的主要目标是整合 将不同的实验条件转化为连贯的定量脑宽电路模型,指导进一步验证, 细化和假设检验实验。我们将建立一个长达十年的实验理论数据处理 合作,在我们对动物整个大脑功能的理解方面取得了前所未有的进展, 复杂的神经元结构和功能。 我们将采用多尺度方法,总结如下:行为模型-能够准确的概率 根据动物的环境和最近的行为历史预测动物的行为。 概念电路模型-初始 识别参与特定感觉运动任务的大脑结构及其潜在投射的图表。 功能 电路模型-系统的定量网络模型,其功能单元是通过以下方式确定的局部群体: 脑宽活动轨迹的维度缩减。重要的是,这种全脑模型将不断整合 随着特定任务实验的进展,增加了额外的结构和电路。 神经元回路模型-数据来自 在单个神经元/突触水平上的扰动和EM验证研究将被整合到单个神经元水平上 特定本地电路的模型。我们还将纳入有关动作选择、多感官整合和 在总体项目目标2的实验中收集的决策。模型电路将被集成到 多尺度虚拟鱼软件平台,允许可视化和查询实验和建模数据, 共同框架。我们的多尺度方法将扩展到时域。为了模拟大脑状态依赖性, 行为和神经元功能(总体目标3),我们将建立一个分层可切换模型,大脑状态缓慢 在顶层的动态,其调节较低层,正在进行的快速行为和神经元模型(如上所述)。 我们将试图从我们的鱼脑模型和行为模型中提取出可能普遍适用的一般原则。 物种这将通过使用我们的建模方法在大鼠和果蝇幼虫中进行相关实验来验证(项目 4),特别是在脑状态动力学和行为和感觉运动的神经调节控制领域 处理.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haim Sompolinsky其他文献

Haim Sompolinsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.46万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 53.46万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 53.46万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 53.46万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 53.46万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 53.46万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 53.46万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 53.46万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 53.46万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 53.46万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了