Non-Invasive Detection of Tumor Extracellular pH using Multispectral Optoacoustic Tomography

使用多光谱光声断层扫描非侵入性检测肿瘤细胞外 pH 值

基本信息

项目摘要

Malignant melanoma is one of the fastest rising cancers in the US. While treatment for clinical stage I and II melanoma involves wide local excision of the primary tumor, with staging of the regional lymph nodes by sentinel lymph node (SLN) biopsy, SLN biopsy is fraught with false-negative results. Technology that would reliably detect nodal metastases, not just the first draining node, could improve the sensitivity of melanoma nodal staging. Therefore, our objective is to (1) develop, characterize, validate and compare (A) optoacoustic ultra-acidic pH-responsive acidic pH targeted dye, pHO dye, and (B) external cell membrane anchored, V7- pHO, for tumor detection by multispectral optoacoustic tomography (MSOT) and (2) provide real-time color maps of tissue pH to allow for identification of regions of tumor in lymph nodes. Based on our preliminary data, we reason that it is possible to use our targeting methodology to identify very small metastases, which would allow complete lymph node dissection to be performed only for the 15% to 20% of patients who actually have cancer in the non-sentinel nodes. We hypothesize that pHO and V7-pHO dyes will facilitate detection of melanoma within lymph nodes and differentiate it from non-malignant, fibrous, or inflammatory tissue with high sensitivity and specificity using multispectral optoacoustic tomography. To test our hypothesis, we propose the following aims: 1) characterize and validate pHO and V7-pHO dyes to target acidic pHe for detection of tumor cells in vitro and in tissue phantoms; 2) assess pHO and V7-pHO dyes to facilitate detection of melanoma from non-malignant tissue in vivo using multispectral optoacoustic tomography; and 3) develop ratiometric algorithms based upon the spectral modulation of the pHO and V7-pHO dyes to produce real-time pHe measurement color maps and bi-color maps of tumors. Successful identification of melanoma containing lymph nodes using pHO or V7-pHO dyes detected using MSOT has potential to stratify patients for treatment in the clinic. Identification of metastases in lymph nodes or elsewhere in melanoma patients has potential for game- changing clinical management of patients with melanoma.
恶性黑色素瘤是美国发病率上升最快的癌症之一。同时治疗临床I期和II期

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exploration of NIR Squaraine Contrast Agents Containing Various Heterocycles: Synthesis, Optical Properties and Applications.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lacey R McNally其他文献

Lacey R McNally的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lacey R McNally', 18)}}的其他基金

Theranostic Nanoparticles For Detection and Treatment of Pancreatic Cancer
用于检测和治疗胰腺癌的治疗诊断纳米颗粒
  • 批准号:
    10140485
  • 财政年份:
    2020
  • 资助金额:
    $ 32.11万
  • 项目类别:
Cancer Therapeutics Program
癌症治疗计划
  • 批准号:
    10627031
  • 财政年份:
    2018
  • 资助金额:
    $ 32.11万
  • 项目类别:
Stroma Targeted Theranostic Nanoparticles for Pancreatic Cancer
用于胰腺癌的基质靶向治疗诊断纳米颗粒
  • 批准号:
    10115900
  • 财政年份:
    2017
  • 资助金额:
    $ 32.11万
  • 项目类别:
Stroma targeted theranostic nanoparticles for pancreatic cancer
Stroma 靶向治疗胰腺癌的纳米颗粒
  • 批准号:
    9494558
  • 财政年份:
    2017
  • 资助金额:
    $ 32.11万
  • 项目类别:
Stroma Targeted Theranostic Nanoparticles for Pancreatic Cancer
用于胰腺癌的基质靶向治疗诊断纳米颗粒
  • 批准号:
    9698308
  • 财政年份:
    2017
  • 资助金额:
    $ 32.11万
  • 项目类别:
Stroma targeted theranostic nanoparticles for pancreatic cancer
Stroma 靶向治疗胰腺癌的纳米颗粒
  • 批准号:
    10008091
  • 财政年份:
    2017
  • 资助金额:
    $ 32.11万
  • 项目类别:
KiSS1 treatment of pancreatic adenocarcinoma
KiSS1 治疗胰腺癌
  • 批准号:
    8336918
  • 财政年份:
    2011
  • 资助金额:
    $ 32.11万
  • 项目类别:
KiSS1 treatment of pancreatic adenocarcinoma
KiSS1 治疗胰腺癌
  • 批准号:
    8518260
  • 财政年份:
    2011
  • 资助金额:
    $ 32.11万
  • 项目类别:
KiSS1 treatment of pancreatic adenocarcinoma
KiSS1 治疗胰腺癌
  • 批准号:
    8332910
  • 财政年份:
    2011
  • 资助金额:
    $ 32.11万
  • 项目类别:
KiSS1 treatment of pancreatic adenocarcinoma
KiSS1 治疗胰腺癌
  • 批准号:
    7641316
  • 财政年份:
    2009
  • 资助金额:
    $ 32.11万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 32.11万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 32.11万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 32.11万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 32.11万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 32.11万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 32.11万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 32.11万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 32.11万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 32.11万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.11万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了