NIPreps: integrating neuroimaging preprocessing workflows across modalities, populations, and species
NIPreps:整合跨模式、人群和物种的神经影像预处理工作流程
基本信息
- 批准号:10260312
- 负责人:
- 金额:$ 144.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-19 至 2024-07-18
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnimal ModelAtlasesAutomobile DrivingBRAIN initiativeBrainCodeCollectionCommunitiesComputer AnalysisComputer softwareDataData AggregationData AnalysesDevelopmentDevicesDiffusion Magnetic Resonance ImagingDisciplineDocumentationEcosystemEducational MaterialsElderlyEnsureEventExperimental DesignsFoundationsFunctional Magnetic Resonance ImagingGenerationsHumanImageInvestigationInvestmentsLibrariesMagnetic Resonance ImagingMeasurementMeasuresMental disordersMethodologyMethodsModalityMonitorNeurosciencesPatternPerformancePopulationPositron-Emission TomographyProcessReportingReproducibilityResearchResearch PersonnelResearch SupportSoftware FrameworkSolidSourceSpecimenSpin LabelsStandardizationStatistical Data InterpretationStatistical ModelsStructureSumSystemTechniquesTranslationsVisualVisualizationVisualization softwarebrain healthdesignhackathonheterogenous dataimage reconstructionimaging modalityimaging studyinstrumentmolecular imagingmorphometrymultimodalityneuroimagingneuropsychiatric disordernext generationnonhuman primatepreclinical imagingprogramssustainability frameworksymposiumtool
项目摘要
Project Summary
Despite the rapid advances in the neuroimaging research workflow over the last decade, the enormous
variability between and within data types and specimens impedes integrated analyses. Moreover, the
availability of a comprehensive portfolio of software libraries and tools has also resulted in a concerning
degree of analytical variability. Generalizing the preprocessing — that is, the intermediate step between data
generation by the measurement device and the subsequent statistical modeling and analysis — beyond
fMRIPrep, we propose a framework called NiPreps (NeuroImaging Preprocessing toolS) that we envision as a
workbench for the development of such pipelines. By exclusively addressing the preprocessing of the data,
fMRIPrep has successfully allowed researchers to focus their effort and expertise on the portion most relevant
to scientific inference (i.e., statistical and computational analyses) and reduce methodological variability.
NiPreps expands fMRIPrep to operate on new imaging modalities (diffusion MRI, arterial spin labeling,
positron emission tomography, and multi-echo functional MRI) and disciplines (e.g., preclinical imaging).
Despite some remarkable analysis workflows that display end-to-end consolidation, integrations across
applications (e.g., analyses of human and nonhuman data) remain exceptionally challenging.
Hence, we will evolve fMRIPrep into NiPreps, a software framework integrating BIDS and following the
BIDS-Apps specifications. First, the project will consolidate the NiPreps foundations, with the generalization
of fMRIPrep's driving principles and methods across modalities and domains of application. Second, we will
expand the portfolio of end-user NiPreps with dMRIPrep, ASLPrep, PETPrep, and better coverage of
multi-echo fMRI by fMRIPrep. Finally, we will address the NiPreps community's consolidation to ensure the
sustainability of the framework, converging the communities around each "-Prep" with hackathons and
docusprints. In short, NIPreps will pave the way towards next-generation imaging, ultimately allowing
neuroscientists to seek a unified statistical framework capable of rigorously integrating cross-application and
cross-species data analysis.
项目概要
尽管神经影像研究工作流程在过去十年中取得了快速进步,但巨大的
数据类型和样本之间以及内部的可变性阻碍了综合分析。此外,
全面的软件库和工具组合的可用性也导致了令人担忧的问题
分析变异性的程度。概括预处理——即数据之间的中间步骤
测量设备生成以及随后的统计建模和分析 - 超越
fMRIPrep,我们提出了一个名为 NiPreps(神经成像预处理工具)的框架,我们将其设想为
用于开发此类管道的工作台。通过专门解决数据的预处理问题,
fMRIPrep 成功地让研究人员将他们的精力和专业知识集中在最相关的部分
科学推理(即统计和计算分析)并减少方法的可变性。
NiPreps 扩展了 fMRIPrep,以在新的成像模式上运行(扩散 MRI、动脉自旋标记、
正电子发射断层扫描和多回波功能 MRI)和学科(例如临床前成像)。
尽管有一些出色的分析工作流程显示了端到端的整合,但跨领域的集成
应用(例如,人类和非人类数据的分析)仍然极具挑战性。
因此,我们将fMRIPrep演进为NiPreps,一个集成BIDS并遵循以下原则的软件框架:
BIDS 应用程序规范。首先,该项目将巩固 NiPreps 基础,并进行泛化
fMRIPrep 跨模式和应用领域的驱动原理和方法。其次,我们将
通过 dMRIPrep、ASLPrep、PETPrep 扩展最终用户 NiPreps 的产品组合,并更好地覆盖
通过 fMRIPrep 进行多回波功能磁共振成像。最后,我们将解决 NiPreps 社区的整合问题,以确保
该框架的可持续性,通过黑客马拉松将每个“-Prep”社区聚集在一起,
文档打印。简而言之,NIPreps 将为下一代成像铺平道路,最终使
神经科学家寻求一个统一的统计框架,能够严格整合跨应用和
跨物种数据分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oscar Esteban其他文献
Oscar Esteban的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 144.58万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 144.58万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 144.58万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 144.58万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 144.58万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 144.58万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 144.58万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 144.58万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 144.58万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 144.58万 - 项目类别:
Research Grant














{{item.name}}会员




