Generalizable biomedical informatics strategies for predictive modeling of treatment response
用于治疗反应预测建模的通用生物医学信息学策略
基本信息
- 批准号:10259888
- 负责人:
- 金额:$ 32.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-09 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:Acute Myelocytic LeukemiaAffectAgeAlgorithmsAlternative SplicingAndrogen AntagonistsAndrogensAtlasesBig DataBig Data MethodsBioinformaticsCancer Institute of New JerseyCase StudyClinicalClinical DataClinical TrialsCommunitiesComplexComputersConsultDataData AnalysesDecision MakingDevelopmentDiseaseDisease ManagementDisease OutcomeDistributed SystemsEngineeringEnsureEventFoundationsGenerationsGenesGenetic TranscriptionGenomicsGleason Grade for Prostate CancerGoalsInstitutionInvestigationMachine LearningMalignant neoplasm of prostateMethodsModelingMolecularMolecular AnalysisMolecular ProfilingMultiomic DataNational Heart, Lung, and Blood InstituteOncologyOnline SystemsPathway AnalysisPatient riskPatientsPositioning AttributePrediction of Response to TherapyProstate AdenocarcinomaPublishingRaceRegimenResearch PersonnelResistanceResourcesRiskSample SizeStatistical Data InterpretationStatistical ModelsTestingTherapeuticTherapeutic InterventionTimeTrainingTranscriptional RegulationTranslationsTreatment FailureTumor stageUnited States National Institutes of HealthValidationWorkandrogen deprivation therapybasebiomedical informaticscancer genomechemotherapyclinical decision-makingclinical sequencingcohortcostdeprivationdesigngenome-wideimprovedineffective therapiesinnovationmolecular markermultitasknovelopen sourcepatient responsepersonalized therapeuticpredictive modelingprofiles in patientsresponsestandard of carestatistical learningtargeted treatmenttherapeutic candidatetherapy developmenttherapy resistanttooltranscriptomicstreatment responsetreatment risktumorunnecessary treatmentweb portal
项目摘要
Identification of patients with poor and favorable treatment response prior to therapy administration is
invaluable for improving patient survival and disease management. We propose to build an open-source
scalable generalizable method that would assist experimentalists and clinicians on assessing patient's risk of
developing therapy resistance and would establish a foundation for our long-term goal to build a platform for
patient-centric clinical decision making, personalized therapeutic advice, and disease management.
We propose to develop a generalizable versatile bioinformatics paradigm that will use patient
molecular profiles to PREDICT their Therapy Response, PREDICTTR, which combines network analysis,
statistical modeling, and ensemble machine learning in a unique innovative way that allows accurate
elucidation of complex multi-level relationships that govern treatment response. The objective of our
proposed approach is two-fold: (i) uncover molecular markers and valuable candidates for therapeutic
intervention, which can potentially be targeted to preclude or overcome resistance; and (ii) predict patient's
response to therapy administration, which holds a long-term promise to improve disease outcome and reduce
the cost of unnecessary and ineffective treatments.
Motivated by increasing cases of treatment resistance in oncology, we will apply our algorithm to
elucidate (i) response to androgen targeting in prostate cancer and (ii) response to standard-of-care
chemotherapy in acute myeloid leukemia. We will disseminate our approach through a web-based decision-
making tool, which will be implemented through a Hadoop-oriented solution to (i) broaden its practical impact
and (ii) establish clinical utility. Taken together, this multi-task resource is a unique innovative effort of its kind
in the therapeutic resistance space with a direct broad impact on personalized therapeutic advice and disease
management. Even though we will train our model in prostate cancer and acute myeloid leukemia, our
approach can be easily and broadly applicable to other therapies and diseases.
This effort will be led by an Early Stage Investigator, Antonina Mitrofanova (PI) who has extensive
training and expertise in biomedical informatics and big data analytics. Her collaborative team includes Dr.
Shantenu Jha (Rutgers, co-I) who is an expert in distributed systems and will advise on Hadoop development
and validation; Dr. Shridar Ganesan (Rutgers, co-I) who will provide clinical and sequencing patient data and
incorporate the utilization of our method into the Rutgers CINJ Molecular Tumor Board; Dr. Isaac Kim
(Rutgers, co-I) who will provide additional data for validation in prostate cancer; Dr. Christopher Hourigan
(NHLBI , NIH, Significant Collaborator), who will provide data for clinical validation in acute myeloid leukemia
and is committed to test our web-based portal; and Dr. Scott Parrott (Rutgers, co-I), who is an expert in
statistical analysis and will consult on power calculations and multiple testing corrections.
在治疗之前,鉴定患有较差且有利治疗反应的患者是
对于改善患者生存和疾病管理的宝贵价值。我们建议建造一个开源
可扩展的可扩展方法,可以帮助实验者和临床医生评估患者的风险
制定耐药性,并将为我们的长期目标建立基础,以建立一个平台
以患者为中心的临床决策,个性化的治疗建议和疾病管理。
我们建议开发可使用患者的可推广的多功能生物信息学范式
分子谱以预测其治疗反应,预测TRET,结合了网络分析,
统计建模和集合机器以独特的创新方式学习,可以准确
阐明控制治疗反应的复杂多层关系。我们的目标
提议的方法是两个方面:(i)发现分子标记和有价值的治疗候选者
干预措施有可能针对排除或克服抵抗力; (ii)预测患者的
对治疗给药的反应,这具有改善疾病结果并减少的长期承诺
不必要和无效治疗的成本。
通过增加肿瘤学治疗抗药性病例的动机,我们将应用我们的算法
阐明(i)对前列腺癌中雄激素靶向的反应,以及(ii)对标准护理的反应
急性髓样白血病的化学疗法。我们将通过基于网络的决策来传播我们的方法 -
制造工具,该工具将通过面向Hadoop的解决方案来实施(i)扩大其实际影响
(ii)建立临床公用事业。综上所述,这种多任务资源是同类的独特创新努力
在治疗抗性领域,对个性化治疗建议和疾病有直接影响
管理。即使我们将在前列腺癌和急性髓样白血病中训练我们的模型,我们
方法可以轻松,广泛地适用于其他疗法和疾病。
这项努力将由早期舞台调查员安东尼娜·米特罗法诺瓦(Antonina Mitrofanova)(PI)领导
生物医学信息学和大数据分析方面的培训和专业知识。她的合作团队包括博士。
Shantenu Jha(Rutgers,Co-I)是分布式系统专家,将为Hadoop开发提供建议
和验证; Shridar Ganesan博士(Rutgers,Co-I)将提供临床和测序的患者数据以及
将我们的方法的利用纳入Rutgers Cinj分子肿瘤板;艾萨克·金博士
(Rutgers,Co-I)将提供其他数据以验证前列腺癌; Christopher Hourigan博士
(NHLBI,NIH,重要合作者),他将提供急性髓样白血病临床验证的数据
并致力于测试我们基于网络的门户;以及Scott Parrott博士(Rutgers,Co-I),他是专家
统计分析,并将咨询功率计算和多个测试校正。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANTONINA MITROFANOVA其他文献
ANTONINA MITROFANOVA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANTONINA MITROFANOVA', 18)}}的其他基金
Generalizable biomedical informatics strategies for predictive modeling of treatment response
用于治疗反应预测建模的通用生物医学信息学策略
- 批准号:
10463755 - 财政年份:2020
- 资助金额:
$ 32.56万 - 项目类别:
Generalizable biomedical informatics strategies for predictive modeling of treatment response
用于治疗反应预测建模的通用生物医学信息学策略
- 批准号:
10117702 - 财政年份:2020
- 资助金额:
$ 32.56万 - 项目类别:
相似国自然基金
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
恒星模型中氧元素丰度的变化对大样本F、G、K矮星年龄测定的影响
- 批准号:12303035
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
中国东部地区大气颗粒物的年龄分布特征及其影响因素的模拟研究
- 批准号:42305193
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Regulation and function of aged hematopoietic stem cell (HSC) niche
衰老造血干细胞(HSC)生态位的调节和功能
- 批准号:
10723396 - 财政年份:2023
- 资助金额:
$ 32.56万 - 项目类别:
Molecular Mechanisms of MDS pathogenesis with aging
MDS随衰老发病的分子机制
- 批准号:
10737177 - 财政年份:2023
- 资助金额:
$ 32.56万 - 项目类别:
Clonal hematopoiesis and inherited genetic variation in sickle cell disease
镰状细胞病的克隆造血和遗传变异
- 批准号:
10638404 - 财政年份:2023
- 资助金额:
$ 32.56万 - 项目类别:
Mitochondrial NAD+ in Acute Myeloid Leukemias
急性髓系白血病中的线粒体 NAD
- 批准号:
10655208 - 财政年份:2023
- 资助金额:
$ 32.56万 - 项目类别:
Whole Genome Sequencing for Genomic Evaluation and Risk Stratification of Patients with Myelodysplastic Syndromes
全基因组测序用于骨髓增生异常综合征患者的基因组评估和风险分层
- 批准号:
10506155 - 财政年份:2022
- 资助金额:
$ 32.56万 - 项目类别: