Modeling Membrane Dynamics and Permeation
膜动力学和渗透建模
基本信息
- 批准号:10261358
- 负责人:
- 金额:$ 33.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdsorptionAlgorithmsAmino AcidsBiologicalBiologyCell CompartmentationCell Culture TechniquesCell membraneCellsChargeChemicalsCholesterolCircular DichroismComputer AnalysisComputer SimulationComputing MethodologiesDefense MechanismsEnvironmentEventFluorescenceFree EnergyGrantHeterogeneityHourHumanImageIntegral Membrane ProteinInvestigationKineticsLabelLeadLengthLightLipidsLocationMalignant - descriptorMalignant NeoplasmsMeasuresMembraneMolecularNormal CellOrganellesOrganismOutcomePathway interactionsPatientsPenetrationPeptide TransportPeptidesPermeabilityPharmaceutical PreparationsPhospholipidsPhysical ChemistryPhysicsProteinsPumpReactionResolutionSamplingShapesSpecificitySpectrum AnalysisSystemTechniquesTimeTryptophanVariantanti-cancerantimicrobial peptidebasebiological systemscancer celldesignexperienceexperimental studyflexibilityimprovedinfrared spectroscopymembrane modelmillisecondmolecular dynamicsnovelscreening panelsimulationtargeted agenttooltrafficking
项目摘要
Project Summary
This proposal examines the efficiency and selectivity of peptide transport through biological
membranes. Peptides are widely used in biology to permeate through target membranes. They
transport material to specific cells as well as cell compartments. They are also used as defense
mechanisms against other organisms such as antimicrobial peptides, or against malignant cells
(anticancer peptides). The diversity and specificity of peptide functions make them an excellent
target for a study that aims to deliver material (drugs) with razor sharp accuracy into a selected
cell or a cell compartment. An interdisciplinary team was assembled to study peptide
interactions with biological membranes that encompass expertise in molecular dynamics
simulations of biological molecules, expertise in physical chemistry experiments on biological
systems that are able to pinpoint the location and measure the dynamics of a diverse set of
peptides passing through different types of membranes, and expertise in biological experiments
of peptide permeation into living cells. The interdisciplinary team is needed because of the
tremendous complexity of biological membranes that are made of thousands types of different
phospholipid molecules, and many other components such as cholesterol molecules and trans-
membrane proteins. This complexity is necessary for membrane function. Novel simulation and
experimental tools are developed that will make it possible to compute, predict and measure the
impact of membrane and peptide variation on permeability and function. Variations in selectivity
of the plasma membranes of cancer and normal cells were already illustrated and will be further
investigated to elucidate specificity of molecular mechanisms and offer design principles. This
project is expected to shed light on the detailed mechanisms that control the efficiency and
selectivity of peptide transport through biological membranes, as well as offer avenues to impact
these mechanisms.
项目摘要
该提案研究了肽通过生物转运的效率和选择性,
膜。肽在生物学中广泛用于渗透穿过靶膜。他们
将物质运输到特定的细胞以及细胞区室。它们也被用作防御
抗其他生物体如抗微生物肽或抗恶性细胞的机制
(抗癌肽)。肽功能的多样性和特异性使其成为一种极好的
一项研究的目标,旨在提供材料(药物)与剃刀锋利的准确性到一个选定的
细胞或细胞隔室。组建了一个跨学科的团队来研究肽
与生物膜的相互作用,包括分子动力学方面的专业知识
生物分子模拟,生物物理化学实验的专业知识
系统能够精确定位并测量各种各样的
肽通过不同类型的膜,并在生物实验的专业知识
肽渗透到活细胞中。需要跨学科团队,因为
生物膜的巨大复杂性是由数千种不同的
磷脂分子和许多其他成分,如胆固醇分子和反式-
膜蛋白这种复杂性是膜功能所必需的。新的模拟和
实验工具的开发,将有可能计算,预测和测量
膜和肽变化对渗透性和功能影响。选择性的变化
癌细胞和正常细胞的质膜已经被说明,并将进一步
研究阐明分子机制的特异性并提供设计原则。这
该项目预计将阐明控制效率的详细机制,
通过生物膜的肽运输的选择性,以及提供影响的途径
这些机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALFREDO CARDENAS其他文献
ALFREDO CARDENAS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALFREDO CARDENAS', 18)}}的其他基金
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 33.47万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 33.47万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 33.47万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 33.47万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 33.47万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 33.47万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 33.47万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 33.47万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 33.47万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 33.47万 - 项目类别:
Research Grant