Contribution of Macrophages and Fractalkine Towards Degeneration and Repair of Cochlear Synapses
巨噬细胞和分形蛋白对耳蜗突触退化和修复的贡献
基本信息
- 批准号:10090991
- 负责人:
- 金额:$ 25.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-05 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:Acoustic NerveAnimalsAttenuatedAuditoryAxonBindingBrainCX3CR1 geneCellsCessation of lifeCochleaCochlear ImplantsDataDevelopmentDiagnosisEnvironmentFDA approvedFractalkineFunctional disorderFutureGeneticGlutamatesGoalsHair CellsHearingHearing TestsHearing problemImmuneImmunotherapyImpairmentIndividualInjuryInnate Immune SystemInner Hair CellsInterventionLeadMeasuresMembraneMicrogliaMolecularMusNatural regenerationNerve DegenerationNerve FibersNeuritesNeuronsNeuropathyNoiseNoise-Induced Hearing LossOutcomePathologyPeptidesPerformancePeripheralPharmaceutical PreparationsPreventionProtein IsoformsResearch DesignRoleSensory HairSignal TransductionSynapsesTestingTherapeuticTraumaafferent nerveaxonal degenerationbasecochlear synaptopathycytokinedensitydrug preservationefficacy testingexcitotoxicityexperiencehair cell regenerationhearing impairmenthearing preservationhearing restorationhidden hearing lossimprovedin vivoinsightinterestmacrophageneuron lossneurotrophic factornoise traumanoveloverexpressionpreservationpreventreceptorrecruitregenerative therapyrelating to nervous systemrepairedribbon synapsespeech recognitionspiral ganglion
项目摘要
PROJECT SUMMARY/ABSTRACT
Noise trauma can primarily damage the synaptic connections between the inner hair cells and the peripheral
axons of the spiral ganglion neurons. Noise-induced synaptopathy is attributed to glutamate excitotoxicity and
leads to gradual axonal degeneration and ultimately death of the spiral ganglion neurons. The consequences
of loss of synapses and neurons include auditory perceptual dysfunctions leading to difficulty in speech
recognition and listening in noisy environments. This type of auditory dysfunction is known as “hidden hearing
loss” because it is not readily diagnosed through standard hearing tests. Moreover, absence of spiral
ganglion neurons limits the performance of primary therapies for hearing loss such as cochlear implants and
future hair cell regeneration strategies. Currently, there are no approved drugs that promote neuron survival
or elicit regeneration of lost auditory nerves and replenish their synaptic connections with surviving hair cells.
Therefore, it is of great interest to understand the mechanisms for synaptic and neuron degeneration and
regeneration for the development of better ototherapeutics. We recently demonstrated that synaptopathic noise
trauma is sufficient to recruit macrophages (innate-immune cells) towards the damaged inner hair cell-synaptic
region. While the damaged synapses can undergo spontaneous repair however, disruption of fractalkine
signaling (by genetic deletion of fractalkine (FKN) receptor CX3CR1 on macrophages) impairs such
spontaneous synaptic repair and increases spiral ganglion neuron loss after trauma. These data imply that
intact fractalkine signaling is necessary for synaptic repair and neuron survival in the damaged cochlea. Here,
we propose to investigate the effect of activation of fractalkine signaling on prevention and repair of loss
of synapses and neuron survival following cochlear trauma. Aim 1 will determine whether FKN treatment
repairs damaged synapses after noise trauma or excitotoxic insult in mammalian mouse cochlea.
Specifically, FKN peptide will be injected either (transtympanically) after synaptopathic noise trauma in vivo
or after glutamate- induced excitotoxicity in cochlear explants. The precise contribution of FKN membrane or
soluble isoforms towards synaptic repair will be examined. Aim 2 will determine whether FKN treatment
reduces degeneration of synapses following noise trauma or glutamate excitotoxicity. We will treat with FKN
membrane or soluble isoforms prior to glutamate treatment in ex vivo cochlear explants or prior to noise trauma
in vivo (transtympanically). In Aim 3, we will eliminate cochlear macrophages and examine the influence of
this intervention on the degree of synaptic degeneration and repair after synaptopathic noise trauma. For
each aim, auditory function along with morphometric analyses of hair cell, macrophage, synapse and spiral
ganglion neuron counts will be performed. Together, the study design will aid in investigating the effect of
macrophages and fractalkine treatment on cochlear synapse degeneration and repair and hearing restoration
and may lead to identification of novel fractalkine-based therapeutics for “hidden-hearing loss”.
项目摘要/摘要
噪声损伤主要损害内毛细胞和外周毛细胞之间的突触连接。
螺旋神经节神经元的轴突。噪声诱导的突触病变归因于谷氨酸兴奋性毒性和
导致轴突逐渐退化,最终导致螺旋神经节神经元死亡。后果是什么?
突触和神经元的丧失包括导致言语困难的听觉知觉功能障碍
在嘈杂的环境中进行识别和倾听。这种类型的听觉功能障碍被称为“隐性听力”
损失“,因为它不容易通过标准的听力测试来诊断。此外,没有螺旋线
神经节神经元限制了听力损失的初级治疗的效果,如人工耳蜗术和
未来的毛细胞再生策略。目前,还没有被批准的促进神经元存活的药物
或者诱导失去的听神经再生,并补充它们与幸存毛细胞的突触连接。
因此,了解突触和神经元退变的机制是非常有意义的。
再生,以发展更好的耳疗。我们最近证明了突触致病噪音
创伤足以将巨噬细胞(天然免疫细胞)招募到受损的内毛细胞-突触
区域。尽管受损的突触可以进行自发修复,但Fractalkine的破坏
信号(通过巨噬细胞上FKN受体CX3CR1的遗传缺失)损害了这种
创伤后自发的突触修复和增加螺旋神经节神经元的丢失。这些数据意味着
完整的Fractalkine信号是损伤耳蜗区突触修复和神经元存活所必需的。这里,
我们建议研究激活Fractalkine信号在预防和修复丢失中的作用
对耳蜗伤后突触和神经元存活的影响。目标1将决定FKN治疗
修复噪音、创伤或兴奋性毒性伤害后的哺乳动物小鼠耳蜗区受损的突触。
具体地说,FKN多肽将在体内突触病理性噪声损伤后注射(经鼓室)
或在谷氨酸诱导的耳蜗外植体兴奋毒性后。FKN膜的精确贡献或
我们将研究与突触修复有关的可溶型异构体。目标2将确定FKN治疗
减少噪音创伤或谷氨酸兴奋性毒性后突触的退化。我们会用FKN治疗
谷氨酸处理耳蜗体外植体或噪声损伤前的膜或可溶性异构体
活体内(经鼓室)。在目标3中,我们将消除耳蜗巨噬细胞,并检查
这种干预对突触病理性噪声损伤后突触退行性变和修复程度的影响。为
每个目标、听觉功能以及毛细胞、巨噬细胞、突触和螺旋的形态计量分析
将进行神经节神经元计数。总之,这项研究设计将有助于研究
巨噬细胞联合Fractalkine治疗耳蜗神经突触退变修复及听力恢复
并可能导致发现新的基于Fractalkine的治疗“隐性听力损失”的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tejbeer Kaur其他文献
Tejbeer Kaur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tejbeer Kaur', 18)}}的其他基金
Innate Immunity to Spiral Ganglion Neuron Degeneration
对螺旋神经节神经元变性的先天免疫
- 批准号:
10640178 - 财政年份:2022
- 资助金额:
$ 25.55万 - 项目类别:
Innate Immunity to Spiral Ganglion Neuron Degeneration
对螺旋神经节神经元变性的先天免疫
- 批准号:
10880051 - 财政年份:2022
- 资助金额:
$ 25.55万 - 项目类别:
Contribution of Macrophages and Fractalkine Towards Degeneration and Repair of Cochlear Synapses
巨噬细胞和分形蛋白对耳蜗突触退化和修复的贡献
- 批准号:
10579968 - 财政年份:2021
- 资助金额:
$ 25.55万 - 项目类别:
ROLE OF MACROPHAGES IN NOISE-INDUCED COCHLEAR SYNAPTOPATHY AND NEUROPATHY
巨噬细胞在噪声引起的耳蜗突触病和神经病中的作用
- 批准号:
9098921 - 财政年份:2016
- 资助金额:
$ 25.55万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 25.55万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 25.55万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 25.55万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 25.55万 - 项目类别:
Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
- 批准号:
2889694 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 25.55万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)