Proteolytic control of DNA interstrand cross-link repair and genome integrity
DNA 链间交联修复和基因组完整性的蛋白水解控制
基本信息
- 批准号:10090452
- 负责人:
- 金额:$ 36.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-03-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:AffectAnimal ModelCancer EtiologyCancer cell lineCellsChemosensitizationComplexCytotoxic ChemotherapyDNADNA DamageDNA Interstrand Cross-Link RepairDNA RepairDNA Repair PathwayDNA biosynthesisDataDefectDegradation PathwayDevelopmentFANCD2 proteinFBXW7 geneFanconi Anemia pathwayFanconi&aposs AnemiaGenomic InstabilityGoalsHealthHomeostasisHumanImpairmentInterventionInvestigationIsomeraseKineticsKnowledgeLaboratoriesLeadLesionLinkMaintenanceMalignant NeoplasmsMediatingMolecularMolecular ConformationMolecular GeneticsMonoubiquitinationPathogenesisPathway interactionsPeptidylprolyl IsomerasePhosphorylationPlatinumProcessProtein DephosphorylationProtein Phosphatase 2A Regulatory Subunit PR53Protein SubunitsProteinsProteolysisPublic HealthRegulationResearchRoleSignal PathwaySignal TransductionStructureSystemTherapeuticTherapeutic InterventionUbiquitinWorkcancer predispositioncancer therapycis trans isomerizationcis-trans-Isomerasescrosslinkdesigngenome integrityhigh riskimprovedinterestmalignant breast neoplasmmouse modelmulticatalytic endopeptidase complexneoplastic cellpreservationprotein degradationrepairedresponsetargeted treatmenttherapy outcometranslational impacttreatment responsetumorigenesisubiquitin-protein ligase
项目摘要
PROJECT SUMMARY
Genome instability caused by incorrect DNA repair system is a major driver for tumorigenesis. Our long-
term goal is to understand how cellular proteolysis controls the pathway responsible for repairing DNA
damage, thereby preserving the integrity of the genome. Since homeostasis of DNA repair factors is critical for
the activity of DNA repair, elucidating underlying mechanisms for the ubiquitin-proteolytic pathway in DNA
repair is essential for understanding the etiology of cancer when it is derailed. We are interested in the
mechanisms that link proteolysis to signaling of the Fanconi anemia (FA) DNA repair pathway, which deals
with DNA interstrand cross-links (ICL) encountered during DNA replication. Its defects lead to a high risk of
multiple cancers due to elevated genome instability, and its aberrant activity is known to influence therapeutic
response to cytotoxic chemotherapy that utilizes DNA cross-linking agents including platinum. Thus,
knowledge on molecular and genetic factors that control the FA pathway is expected to help us exploit their
deregulation for the development of improved cancer therapeutics. One of the fundamental regulatory
mechanisms for protein degradation is reversible phosphorylation of protein targets, which marks a protein to
be destroyed by ubiquitin-proteasome system. We recently discovered the proteolytic signaling pathway of
FAAP20, a key component of the FA core ubiquitin E3 ligase complex necessary for the FA pathway
activation, and showed that deregulation of FAAP20 leads to a functional disruption of the FA core complex,
impairing the ability of cells to repair DNA ICL lesions. Specifically, we defined SCFFBW7 as an ubiquitin E3
ligase complex responsible for phosphorylation-dependent FAAP20 degradation and demonstrated how its
deregulation affects the FA pathway. Our preliminary studies also indicate that phosphorylation-dependent
conformational change of FAAP20 regulated by cis-trans isomerase PIN1 modulates ubiquitin signaling of
FAAP20 degradation, thereby determining the fate of the FA core complex and influencing the efficiency of
DNA ICL repair. Herein, we propose to explicate PIN1-SCFFBW7 proteolytic signaling in controlling the FA
pathway and its impact to genome instability. Specifically, we will (1) dissect the signaling pathway of FAAP20
degradation regulated by SCFFBW7, (2) elucidate the mechanisms by which PIN1-driven structural change of
FAAP20 functions as a regulatory switch to control FAAP20 stability, and (3) determine the role of PIN1 in
regulating DNA ICL repair and the therapeutic response of breast cancer to platinum via FA pathway signaling
using cancer cell lines and a mouse model. Together, our studies are expected to reveal the first direct link
between a highly deregulated PIN1-SCFFBW7 axis in human cancer and DNA ICL repair. This work will
ultimately benefit human health by offering a unique opportunity to design therapeutic interventions that exploit
aberrant DNA repair-associated proteolytic signaling in FA-related malignancy and cancer in general.
项目摘要
由不正确的DNA修复系统引起的基因组不稳定性是肿瘤发生的主要驱动力。我们长久以来-
本学期的目标是了解细胞蛋白水解如何控制负责修复DNA的途径
从而保护基因组的完整性。由于DNA修复因子的稳态对于
DNA修复的活性,阐明了DNA中泛素蛋白水解途径的潜在机制
当癌症发生时,修复对于理解癌症的病因是必不可少的。我们感兴趣的是
将蛋白水解与范可尼贫血(FA)DNA修复途径的信号传导联系起来的机制,
与DNA复制过程中遇到的DNA链间交联(ICL)。它的缺陷会导致高风险的
由于基因组不稳定性升高而导致的多种癌症,并且已知其异常活性会影响治疗效果。
对利用DNA交联剂(包括铂)的细胞毒性化疗的反应。因此,在本发明中,
关于控制FA途径的分子和遗传因素的知识有望帮助我们利用它们。
放松管制以开发改进的癌症治疗剂。一个基本的监管
蛋白质降解的机制是蛋白质靶点的可逆磷酸化,这标志着蛋白质
被泛素-蛋白酶体系统破坏。我们最近发现,
FAAP 20,FA途径所需的FA核心遍在蛋白E3连接酶复合物的关键组分
激活,并表明FAAP 20的失调导致FA核心复合物的功能破坏,
损害细胞修复DNA ICL损伤的能力。具体来说,我们将SCFFBW 7定义为泛素E3
连接酶复合物负责磷酸化依赖性FAAP 20降解,并证明了其如何
去调节影响FA途径。我们的初步研究还表明,
顺反异构酶PIN 1调节FAAP 20构象变化调节泛素信号转导
FAAP 20降解,从而决定FA核心复合物的命运并影响FAAP 20降解的效率。
DNA ICL修复。在此,我们建议解释PIN 1-SCFFBW 7蛋白水解信号在控制FA
途径及其对基因组不稳定性的影响。具体而言,我们将(1)剖析FAAP 20的信号通路
(2)阐明了PIN 1驱动的SCFFBW 7的结构变化的机制,
FAAP 20作为调节开关起作用以控制FAAP 20稳定性,以及(3)确定PIN 1在以下中的作用:
通过FA信号通路调节DNA ICL修复和乳腺癌对铂的治疗反应
使用癌细胞系和小鼠模型。我们的研究有望共同揭示第一个直接联系
人类癌症中高度失调的PIN 1-SCFFBW 7轴与DNA ICL修复之间的关系。这项工作将
通过提供独特的机会来设计治疗干预措施,
FA相关恶性肿瘤和一般癌症中的异常DNA修复相关蛋白水解信号传导。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hyungjin Kim其他文献
Hyungjin Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hyungjin Kim', 18)}}的其他基金
The interplay of TIMELESS and PARP1 in DNA replication fork stability
TIMELESS 和 PARP1 在 DNA 复制叉稳定性中的相互作用
- 批准号:
10517699 - 财政年份:2022
- 资助金额:
$ 36.19万 - 项目类别:
Proteolytic control of DNA interstrand cross-link repair and genome integrity
DNA 链间交联修复和基因组完整性的蛋白水解控制
- 批准号:
10358489 - 财政年份:2018
- 资助金额:
$ 36.19万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 36.19万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 36.19万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 36.19万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 36.19万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 36.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 36.19万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 36.19万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 36.19万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 36.19万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 36.19万 - 项目类别:
Grant-in-Aid for Early-Career Scientists