Retinal Ganglion Cell Subtype Specification in Human Retinal Organoids
人视网膜类器官中视网膜神经节细胞亚型规范
基本信息
- 批准号:10569498
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AdultAxonBiological AssayBiological ModelsBlindnessBrainCellular biologyCessation of lifeClassificationClustered Regularly Interspaced Short Palindromic RepeatsCodeDataDevelopmentDyesEctopic ExpressionEyeFluorescent DyesGene ExpressionGenerationsGenetic Complementation TestGlaucomaGoalsHumanImmunohistochemistryInterneuronsKnock-outLabelMacacaModelingMolecularMolecular ProfilingMorphologyMusMutagenesisNeuronsOrganoidsPhotoreceptorsPlayPopulationPrimatesProtocols documentationPublishingRNARadialReporterRetinaRetinal DiseasesRetinal Ganglion CellsRoleScienceSortingSpecific qualifier valueStainsStratificationTestingTimeTransfectionViralWorkcell typecombinatorialexperimental studyhuman tissuein vivoinsightlipophilicitymodel organismneuronal cell bodypharmacologicregenerative therapyretinal neuronsingle-cell RNA sequencingstem cellstranscription factortransmission processvisual information
项目摘要
Project Summary
Retinal ganglion cells (RGCs) are the interneurons that transmit visual information from the eye to the
brain. Degeneration or death of RGCs results in a number of blinding conditions, including glaucoma. RGCs can
be classified into many subtypes, each with distinct morphologies, functions, and gene expression profiles. While
RGC subtypes have been identified in many vertebrate model organisms, RGC subtypes in the human retina
have not been well-characterized molecularly. Moreover, the mechanisms controlling the specification of RGC
subtypes remain poorly understood, especially in the human retina. In this project, I will study human retinas and
organoids to identify human RGC subtypes and determine mechanisms controlling their generation. My work will
yield mechanistic insights into human RGC subtype specification and facilitate the use of stem cell-derived
organoids in regenerative therapies for retinopathies like glaucoma.
One of the major goals of this project is to molecularly classify the RGC subtypes of the adult human
retina. Based on published single cell RNA sequencing (scRNA-seq) data in human and macaque retinas, I
generated a testable gene expression code to uniquely identify each RGC subtype. I will use this gene
expression code to guide combinatorial expression analysis (i.e. immunohistochemistry and RNA FISH) and
identify human RGC subtypes. I have already distinguished three human RGC subtypes using my gene
expression code. I will also characterize the morphologies of these RGC subtypes. I will use combinatorial IHC
and the lipophilic dye DiD to molecularly and morphologically classify human RGC subtypes (Aim 1).
A major challenge to studying human RGC biology is the limited access to genetically and
pharmacologically manipulatable human tissue. Human retinal organoids provide a powerful model to study
developing human tissue in controlled conditions. The Johnston lab advanced the use of human retinal organoids
to study the mechanisms controlling photoreceptor fate specification. I showed that organoids are a tractable
model system to study RGC biology by developing an RGC axon outgrowth assay, which demonstrated that
RGCs rapidly extend axons, recapitulating their in vivo capabilities. Furthermore, I identified two subtypes of
RGCs in organoids. To identify the repertoire of RGC subtypes in human organoids, I will assess expression
based on the testable gene expression code and complement this approach by conducting scRNA-seq over a
time course of organoid development (Aim 2). The transcription factors EOMES/TBR2, TBR1, and TBX5 have
been implicated in RGC subtype specification. To investigate mechanisms that specify human RGC subtypes, I
will utilize CRISPR mutagenesis to knock out and viral transfection to ectopically express these three
transcription factors and examine changes in RGC subtype populations in human retinal organoids (Aim 3).
项目摘要
视网膜神经节细胞(RGC)是将视觉信息从眼睛传递到视网膜的中间神经元。
个脑袋RGC的变性或死亡导致许多致盲病症,包括青光眼。RGC可以
可分为许多亚型,每种亚型具有不同的形态、功能和基因表达谱。而
RGC亚型已在许多脊椎动物模式生物中鉴定,RGC亚型在人类视网膜中
还没有很好的分子特征。此外,控制研资局规格的机制
亚型仍然知之甚少,特别是在人类视网膜中。在这个项目中,我将研究人类视网膜,
类器官鉴定人类RGC亚型并确定控制其产生的机制。我的工作将
产生对人RGC亚型特化的机制见解,并促进干细胞衍生的
类器官在青光眼等视网膜病变的再生治疗中的应用。
该项目的主要目标之一是对成人RGC亚型进行分子分类
视网膜。基于已发表的人类和猕猴视网膜单细胞RNA测序(scRNA-seq)数据,
产生了可测试的基因表达密码以唯一地识别每种RGC亚型。我会用这个基因
表达编码以指导组合表达分析(即免疫组织化学和RNA FISH),
鉴定人RGC亚型。我已经用我的基因区分了三种人类RGC亚型
表达式代码。我还将描述这些RGC亚型的形态学特征。我会用免疫组化
和亲脂性染料DiD对人RGC亚型进行分子和形态学分类(目的1)。
研究人类RGC生物学的一个主要挑战是获得基因和
可操作的人体组织。人类视网膜类器官提供了一个强大的模型来研究
在受控条件下发育人体组织。约翰斯顿实验室推进了人类视网膜类器官的使用
研究光感受器命运特化的调控机制。我证明了类器官是一个易于处理的
通过开发RGC轴突生长测定来研究RGC生物学的模型系统,其证明,
RGC迅速延伸轴突,重现其体内能力。此外,我还发现了两种亚型,
类器官中的RGC。为了鉴定人类类器官中RGC亚型的库,我将评估RGC亚型的表达。
基于可测试的基因表达代码,并通过在一个
类器官发育的时间进程(目的2)。转录因子EOMES/TBR 2、TBR 1和TBX 5具有
与RGC亚型规范有关。为了研究指定人类RGC亚型的机制,我
将利用CRISPR诱变敲除和病毒转染异位表达这三个
转录因子,并检查人视网膜类器官中RGC亚型群体的变化(Aim 3)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Guy其他文献
Brian Guy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Guy', 18)}}的其他基金
Retinal Ganglion Cell Subtype Specification in Human Retinal Organoids
人视网膜类器官中视网膜神经节细胞亚型规范
- 批准号:
10389368 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
相似海外基金
An atypical microtubule generation mechanism for neurons drives dendrite and axon development and regeneration
神经元的非典型微管生成机制驱动树突和轴突的发育和再生
- 批准号:
23K21316 - 财政年份:2024
- 资助金额:
$ 4.77万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Characterizing Wnt Signaling Pathways in Axon Guidance
轴突引导中 Wnt 信号通路的特征
- 批准号:
10815443 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
- 批准号:
10896844 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Does phosphorylation regulation of the axon initial segment cytoskeleton improve behavioral abnormalities in ADHD-like animal models?
轴突起始段细胞骨架的磷酸化调节是否可以改善 ADHD 样动物模型的行为异常?
- 批准号:
23KJ1485 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: Evolution of ligand-dependent Robo receptor activation mechanisms for axon guidance
合作研究:用于轴突引导的配体依赖性 Robo 受体激活机制的进化
- 批准号:
2247939 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Standard Grant
Loss-of-function variants of the axon death protein SARM1 and protection from human neurodegenerative disease
轴突死亡蛋白 SARM1 的功能丧失变体和对人类神经退行性疾病的保护
- 批准号:
2891744 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Studentship
Understanding the degeneration of axon and nerve terminals in Alzheimer's disease and related dementia brain
了解阿尔茨海默病和相关痴呆大脑中轴突和神经末梢的变性
- 批准号:
10661457 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Unlocking BIN1 function in oligodendrocytes and support of axon integrity
解锁少突胶质细胞中的 BIN1 功能并支持轴突完整性
- 批准号:
10901005 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Regulation of ion channel clustering at the axon initial segment by palmitoylation
棕榈酰化对轴突起始段离子通道聚集的调节
- 批准号:
477701 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别:
Operating Grants