Distinguishing TLE and TLE+ using MEG virtual sensors

使用 MEG 虚拟传感器区分 TLE 和 TLE

基本信息

  • 批准号:
    10569123
  • 负责人:
  • 金额:
    $ 19.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-15 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract The most common drug resistant epilepsy involves the temporal lobe (TLE) and a quarter of patients continue to suffer from seizures after temporal lobectomy, with children designated as temporal plus epilepsy (TLE+) having a five-times increased risk of post-operative surgical failure (continued seizures). The long-term goal of our research program is to develop brain connectivity tools that optimize the use of targeted therapies, including surgery. The objective of the proposed study is to use visual analysis and connectomics of MEG virtual sensor waveforms to predict the presence of spikes on intracranial EEG (iEEG) and pre-surgically distinguish between patients with TLE and TLE+. The central hypothesis is that user-defined virtual sensor beamforming (UDvs- beamforming), using expert reader analysis and connectomics, are superior to ECD, current density source modeling, and conventional beamforming for non-invasively differentiating between TLE and TLE+. The rationale is that new, validated MEG methods would improve pre-surgical planning of iEEG and better identify patients at risk for worsened outcomes. The research proposed in this application is innovative because (1) while MEG connectivity measures have been studied in epilepsy, its use in pre-surgical evaluation for TLE/TLE+ would be novel, (2) our approach can characterize both local and widespread connectivity patterns without sampling bias, and (3) results can be collected on an individual patient basis which will facilitate immediate integration into existing clinical pipelines. This contribution is significant because it is the first step in a program of research that is expected to improve pre-surgical planning for patients with drug resistant epilepsy and improve understanding of treatment failure and outcomes in epilepsy.
项目总结/摘要 最常见的耐药性癫痫涉及颞叶(TLE),四分之一的患者继续 颞叶切除术后癫痫发作,儿童被指定为颞叶癫痫+(TLE+) 术后手术失败(持续癫痫发作)的风险增加5倍。的长期目标 我们的研究计划是开发大脑连接工具,优化靶向治疗的使用,包括 手术该研究的目的是使用视觉分析和脑磁虚拟传感器的连接 波形来预测颅内EEG(iEEG)上尖峰的存在,并在手术前区分 TLE和TLE+患者。中心假设是用户定义的虚拟传感器波束形成(UDvs- 波束形成),使用专家阅读器分析和连接组学,上级ECD,电流密度源 建模,以及用于TLE和TLE+之间的非侵入性区分的常规波束形成。的理由 新的,经过验证的MEG方法将改善iEEG的术前计划,并更好地识别患者, 结果恶化的风险。本申请中提出的研究是创新的,因为(1)虽然MEG 已经在癫痫中研究了连通性测量,其在TLE/TLE+术前评估中的使用将是 新颖,(2)我们的方法可以表征本地和广泛的连接模式,没有采样偏差, 和(3)可以在个体患者的基础上收集结果,这将有助于立即整合到 现有的临床管道。这一贡献意义重大,因为它是研究计划的第一步, 预计将改善耐药癫痫患者的术前规划并提高理解 癫痫治疗失败和结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey Tenney其他文献

Jeffrey Tenney的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey Tenney', 18)}}的其他基金

Distinguishing TLE and TLE+ using MEG virtual sensors
使用 MEG 虚拟传感器区分 TLE 和 TLE
  • 批准号:
    10447404
  • 财政年份:
    2022
  • 资助金额:
    $ 19.88万
  • 项目类别:

相似海外基金

Synthesis and Biological Evaluation of Disubstituted Beta-Alanines as Antiepileptic Agents
双取代β-丙氨酸抗癫痫药的合成及生物学评价
  • 批准号:
    480799-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 19.88万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了