Deciphering gene regulatory networks modulating human trophoblast stem cell self-renewal and differentiation
破译调节人类滋养层干细胞自我更新和分化的基因调控网络
基本信息
- 批准号:10569672
- 负责人:
- 金额:$ 45.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:Biological ModelsBiotinylationBlood VesselsCellsClustered Regularly Interspaced Short Palindromic RepeatsDataDefectDevelopmentDiseaseEconomic BurdenEmbryoEnhancersEpigenetic ProcessEvaluationFetal TissuesFoundationsFractionationFutureGenesGenetic TranscriptionHematopoieticHumanHuman DevelopmentImmunodeficient MouseImmunologicsIn VitroKnock-inKnowledge acquisitionLogicMapsMass Spectrum AnalysisMediatingModelingMolecularMolecular BiologyMusOrganOutcomePlacentaPlacentationPlayPre-EclampsiaPregnancyPropertyProteinsPublishingRegulatory ElementResearchResourcesRoleSpecific qualifier valueSyncytiotrophoblastSystemSystems BiologyTestingVillousXenograft procedureblastomere structurecell typecytotrophoblastearly pregnancyembryo cellgain of functiongene regulatory networkhealthy pregnancyimplantationin vivoinsightloss of functionnetwork modelsnovelpregnancy failureprotein complexself-renewalsocioeconomicsstem cell self renewaltranscription factortranscription regulatory networktrophoblasttrophoblast stem cell
项目摘要
Although critical for development, the placenta is one of the least understood organs in the body. Cells belonging to the trophoblast lineage mediate proper implantation and placentation as well as the hematopoietic, vascular, and immunological properties of the placenta. Defects in proper trophoblast differentiation cause early pregnancy failure and other pregnancy-related disorders, but the molecular mechanisms of human trophoblast differentiation remain poorly understood. So far, only a few transcription factors (TFs) are known to play important roles in trophoblast lineage specification, and their functions are primarily characterized in mice, not human. Furthermore, how these TFs form global gene regulatory networks with other regulators, or their target cis-regulatory elements is not well understood. The objective of the proposed research is to delineate transcriptional regulatory networks and global regulatory logics modulating trophoblast lineage differentiation by utilizing human trophoblast stem (TS) cells and their differentiation towards syncytiotrophoblast (ST) and extravillous cytotrophoblast (EVT) as model systems via systems and molecular biology approaches. We hypothesize that mapping trophoblast cell-specific enhancers will allow us to define novel key TFs that control the self-renewal and differentiation of human trophoblast lineages. Our preliminary studies in both mouse and human TS cells revealed that most previously known trophoblast lineage markers are located close to enhancer clusters (ECs) that we have mapped in each cell type, supporting our hypothesis. Our objectives are to 1) comprehensively define human TS cell, ST, and EVT- specific enhancers and ECs, and subsequently identify EC-associated putative key regulatory TFs, 2) functionally validate putative key TFs in self-renewal and differentiation of TS cells to ST and EVT in vitro and in vivo, and 3) reconstruct the core transcriptional regulatory networks modulating human TS cells, ST, and EVT by mapping both native protein interacting partners and chromosomal targets of key TFs. Our proposed studies will provide critical new data in this field, enable a systems-level understanding of early trophoblast differentiation, and create an important resource to gain further insights into the molecular regulatory mechanisms of how extra-embryonic cells are specified, maintained, and lineage-restricted during human development. Our results will help guide future biomedical advances for detecting and treating pregnancy- related disorders.
虽然胎盘对发育至关重要,但它是人体中最不了解的器官之一。属于滋养层谱系的细胞介导胎盘的适当着床和胎盘形成以及造血、血管和免疫特性。滋养层细胞分化缺陷可导致早期妊娠失败和其他妊娠相关疾病,但人类滋养层细胞分化的分子机制仍知之甚少。到目前为止,只有少数转录因子(TF)被认为在滋养层细胞谱系特化中发挥重要作用,并且它们的功能主要在小鼠中表征,而不是在人类中。此外,这些转录因子如何与其他调控因子或其靶顺式调控元件形成全局基因调控网络尚不清楚。拟开展的研究的目的是通过系统和分子生物学方法,利用人类滋养层干细胞(TS)及其向合体滋养层细胞(ST)和绒毛外细胞滋养层细胞(EVT)分化的模型系统,描绘调控滋养层细胞谱系分化的转录调控网络和全球调控逻辑。我们假设绘制滋养层细胞特异性增强子将使我们能够定义控制人类滋养层谱系自我更新和分化的新的关键TF。我们在小鼠和人类TS细胞中的初步研究表明,大多数先前已知的滋养层谱系标记物位于我们在每种细胞类型中绘制的增强子簇(EC)附近,支持我们的假设。我们的目标是1)全面定义人TS细胞、ST和EVT特异性增强子和EC,并随后鉴定EC相关的推定的关键调节TF,2)在体外和体内功能上验证TS细胞自我更新和分化为ST和EVT的推定的关键TF,和3)重建调节人TS细胞、ST、EVT的核心转录调节网络。和EVT通过映射天然蛋白质相互作用伴侣和关键TF的染色体靶点。我们提出的研究将在这一领域提供关键的新数据,使早期滋养层分化的系统水平的理解,并创建一个重要的资源,以获得进一步的见解如何胚胎外细胞的分子调控机制,在人类发育过程中指定,维持和谱系限制。我们的研究结果将有助于指导未来的生物医学进步,用于检测和治疗妊娠相关疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonghwan Kim其他文献
Jonghwan Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonghwan Kim', 18)}}的其他基金
Deciphering gene regulatory networks modulating human trophoblast stem cell self-renewal and differentiation
破译调节人类滋养层干细胞自我更新和分化的基因调控网络
- 批准号:
10377386 - 财政年份:2021
- 资助金额:
$ 45.51万 - 项目类别:
Investigating regulators controlling differentiation potential of ES cells
研究控制 ES 细胞分化潜能的调节因子
- 批准号:
10237975 - 财政年份:2015
- 资助金额:
$ 45.51万 - 项目类别:
Investigating regulators controlling differentiation potential of ES cells
研究控制 ES 细胞分化潜能的调节因子
- 批准号:
9330188 - 财政年份:2015
- 资助金额:
$ 45.51万 - 项目类别:
Investigating regulators controlling differentiation potential of ES cells
研究控制 ES 细胞分化潜能的调节因子
- 批准号:
10693165 - 财政年份:2015
- 资助金额:
$ 45.51万 - 项目类别:
Investigating regulators controlling differentiation potential of ES cells
研究控制 ES 细胞分化潜能的调节因子
- 批准号:
9973817 - 财政年份:2015
- 资助金额:
$ 45.51万 - 项目类别:
A Myc-centered network in embryonic stem cells and somatic cell reprogramming
胚胎干细胞和体细胞重编程中以 Myc 为中心的网络
- 批准号:
8527799 - 财政年份:2009
- 资助金额:
$ 45.51万 - 项目类别:
A Myc-centered network in embryonic stem cells and somatic cell reprogramming
胚胎干细胞和体细胞重编程中以 Myc 为中心的网络
- 批准号:
8306706 - 财政年份:2009
- 资助金额:
$ 45.51万 - 项目类别:
A Myc-centered network in embryonic stem cells and somatic cell reprogramming
胚胎干细胞和体细胞重编程中以 Myc 为中心的网络
- 批准号:
8282108 - 财政年份:2009
- 资助金额:
$ 45.51万 - 项目类别:
A Myc-centered network in embryonic stem cells and somatic cell reprogramming
胚胎干细胞和体细胞重编程中以 Myc 为中心的网络
- 批准号:
7706607 - 财政年份:2009
- 资助金额:
$ 45.51万 - 项目类别:
相似海外基金
Femto-seq: Targeted photo-biotinylation, pulldown and sequencing of locus and region-specific DNA from femtoliter volumes within individual cells
Femto-seq:从单个细胞内的飞升体积中对位点和区域特异性 DNA 进行靶向光生物素化、下拉和测序
- 批准号:
10587721 - 财政年份:2023
- 资助金额:
$ 45.51万 - 项目类别:
Study of the Type III Secretion System with proximity biotinylation
邻近生物素化的III型分泌系统的研究
- 批准号:
574980-2022 - 财政年份:2022
- 资助金额:
$ 45.51万 - 项目类别:
University Undergraduate Student Research Awards
In-depth characterization of signalling condensates and cancer-driven phase separation using proximity-dependent biotinylation
使用邻近依赖性生物素化深入表征信号凝聚物和癌症驱动的相分离
- 批准号:
454016 - 财政年份:2021
- 资助金额:
$ 45.51万 - 项目类别:
Fellowship Programs
Investigation of CD36 Induced Anti-Angiogenic Response via Proximity Biotinylation
通过邻近生物素化研究 CD36 诱导的抗血管生成反应
- 批准号:
466502 - 财政年份:2021
- 资助金额:
$ 45.51万 - 项目类别:
Studentship Programs
In-vivo biotinylation to capture neuron-specific proteomic changes in mouse models of Alzheimer's disease pathology
体内生物素化捕获阿尔茨海默病病理小鼠模型中神经元特异性蛋白质组变化
- 批准号:
10313151 - 财政年份:2021
- 资助金额:
$ 45.51万 - 项目类别:
In-vivo biotinylation to capture neuron-specific proteomic changes in mouse models of Alzheimer's disease pathology
体内生物素化捕获阿尔茨海默病病理小鼠模型中神经元特异性蛋白质组变化
- 批准号:
10474335 - 财政年份:2021
- 资助金额:
$ 45.51万 - 项目类别:
In-vivo biotinylation to capture neuron-specific proteomic changes in mouse models of Alzheimer's disease pathology
体内生物素化捕获阿尔茨海默病病理小鼠模型中神经元特异性蛋白质组变化
- 批准号:
10688228 - 财政年份:2021
- 资助金额:
$ 45.51万 - 项目类别:
Development of antibody-fusion proximity biotinylation enzyme for analysis of virus entry
开发用于分析病毒进入的抗体融合邻近生物素化酶
- 批准号:
21K19230 - 财政年份:2021
- 资助金额:
$ 45.51万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of analysis method for thalidomide-dependent interactome using proximity-dependent biotinylation enzyme
使用邻近依赖性生物素化酶开发沙利度胺依赖性相互作用组分析方法
- 批准号:
21K15076 - 财政年份:2021
- 资助金额:
$ 45.51万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Biotinylation of DNA and RNA G-quadruplex-interacting proteins
DNA 和 RNA G 四链体相互作用蛋白的生物素化
- 批准号:
550574-2020 - 财政年份:2020
- 资助金额:
$ 45.51万 - 项目类别:
University Undergraduate Student Research Awards