Dynamic allosteric communication within nonribosomal peptide synthetase cyclization domains
非核糖体肽合成酶环化域内的动态变构通讯
基本信息
- 批准号:10569523
- 负责人:
- 金额:$ 34.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-06-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:4&apos-phosphopantetheineActive SitesAnabolismAntibioticsAntineoplastic AgentsArchitectureBacitracinBindingBinding SitesBiologicalBiological AssayBleomycinCatalytic DomainChemicalsCholeraCommunicationComplexComputing MethodologiesCoupledCouplesCouplingCrystallographyCyclizationDevelopmentDimensionsDockingDrug DesignEngineeringEnzyme KineticsEnzymesEscherichia coliGene ActivationImmunosuppressive AgentsLigand BindingLigand Binding DomainMethodological StudiesMethodsModificationMolecularMutationMycobacterium tuberculosisNamesNatural ProductsNuclear Magnetic ResonancePharmacologic SubstancePhysical condensationPlaguePositioning AttributePost-Translational Protein ProcessingProductivityProtein DynamicsProteinsRegulationResearchRoleSirolimusSiteSpecificityStructureSubstrate InteractionSubstrate SpecificitySystemTechniquesTertiary Protein StructureTherapeuticTuberculosisUrinary tract infectionUropathogenic E. coliVibrio choleraeVirulenceYersinia pestisantitumor agentarmenzyme mechanismimprovedinterestintermolecular interactionkinetic modelmacromoleculemicrobialmolecular dynamicsnovelpathogenpeptide synthasepreservationresponsetool
项目摘要
Biological activity, ranging from gene activation to enzyme regulation, occurs through molecular interactions,
and its regulation can be described as a redistribution of intermolecular interactions through chemical
modifications or ligand binding. Unfortunately, when a protein interacts with two partners through remote
binding sites, molecular mechanisms that would explain how changes within proteins alter the communication
between proteins are often elusive. This challenge limits designing drugs that could alter interactions to rescue
abnormal biological activity. The conundrum also applies to microbial enzymatic factories called nonribosomal
peptide synthetases (NRPSs). NRPSs use contiguous protein domains to incorporate and assemble simple
substrates into complex products in an assembly line fashion. The products are often valuable therapeutics,
including antibiotics (bacitracin), antitumor agents (bleomycin), and immunosuppressants (rapamycin), but
others confer virulence to pathogens (E. coli, V. cholerae, Y. pestis). NRPSs are the focus of much interest
because engineering them to incorporate different substrates could produce novel pharmaceuticals. However,
like assembly lines in factories, NRPSs are not static, and their domains interact transiently in a dynamic
architecture. Thus, understanding the molecular mechanisms of NRPSs, and potentially engineering them, is
tantamount to solving a dynamic, multi-dimensional puzzle. Notably, it is unknown how substrates interact with
some domains, and how these interactions, in turn, promote communication between several partner domains,
which is the situation we described above for proteins. We found that structural dynamics within domains
respond to substrates to promote interactions between domains, and that they couple remote binding sites and
enzymatic active sites. That is, dynamics contain keys to understanding both substrate recognition and remote
communication. This proposal aims to provide a molecular description of the dynamics within critical NRPS
domains and reveal its function in substrate and partner domain recognition. We will use nuclear magnetic
resonance, which can describe experimentally dynamics at the atomic-level, to describe dynamic responses
when domains interact with each other, and with substrates as they do during synthesis. The studies are
supplemented with functional assays, computational methods, and crystallography, and will answer
longstanding questions about protein communication, enzyme mechanisms, and remote communication within
proteins. The results will provide a basis to engineer exogenous substrate recognition into NRPSs, a condition
for producing new pharmaceuticals through NRPS reprogramming.
从基因激活到酶调节的生物活性是通过分子相互作用发生的,
它的调节可以被描述为分子间相互作用的重新分配,
修饰或配体结合。不幸的是,当一个蛋白质与两个伴侣通过远程相互作用时,
结合位点,分子机制,可以解释蛋白质内的变化如何改变通信
蛋白质之间的联系往往是难以捉摸的。这一挑战限制了设计可以改变相互作用的药物,
异常的生物活动。这个难题也适用于称为非核糖体的微生物酶工厂
肽合成酶(NRPS)。NRPS使用连续的蛋白质结构域来整合和组装简单的
以装配线的方式将基材加工成复杂的产品。这些产品通常是有价值的治疗剂,
包括抗生素(杆菌肽)、抗肿瘤剂(博来霉素)和免疫抑制剂(雷帕霉素),但
其他的赋予病原体毒性(E. coli、霍乱弧菌、Y.鼠疫)。NRPS是许多兴趣的焦点
因为将它们改造成不同的底物可以生产出新的药物。然而,在这方面,
就像工厂中的装配线一样,NRPS不是静态的,它们的结构域以动态的方式短暂地相互作用。
架构因此,理解NRPS的分子机制,并潜在地对其进行工程改造,
相当于解决一个动态的多维难题。值得注意的是,不知道底物如何与
一些领域,以及这些交互如何反过来促进几个合作伙伴领域之间的通信,
这就是我们上面描述的蛋白质的情况。我们发现结构域内的结构动力学
响应底物,以促进结构域之间的相互作用,并且它们偶联远程结合位点,
酶活性位点。也就是说,动力学包含理解底物识别和远程识别的关键。
通信这个建议的目的是提供一个分子描述的动力学内的关键NRPS
结构域,并揭示其在底物和伴侣结构域识别中的功能。我们将使用核磁共振
共振,它可以在原子水平上描述实验动力学,以描述动态响应
当结构域在合成过程中相互作用以及与底物相互作用时。这些研究
补充功能测定,计算方法和晶体学,并将回答
关于蛋白质通讯,酶机制和内部远程通讯的长期问题
proteins.这些结果将为将外源底物识别工程化到NRPS中提供基础,
通过NRPS重组来生产新药。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SARA: a software environment for the analysis of relaxation data acquired with accordion spectroscopy.
- DOI:10.1007/s10858-013-9807-x
- 发表时间:2014-02
- 期刊:
- 影响因子:2.7
- 作者:Harden BJ;Frueh DP
- 通讯作者:Frueh DP
NMR as a readout to monitor and restore the integrity of complex chemoenzymatic reactions.
NMR作为监测和恢复复杂化学酶反应的完整性的读数。
- DOI:10.1016/j.jmr.2022.107265
- 发表时间:2022-09
- 期刊:
- 影响因子:2.2
- 作者:Marincin, Kenneth A.;Hwang, Yousang;Kengmana, Everett S.;Meyers, David J.;Frueh, Dominique P.
- 通讯作者:Frueh, Dominique P.
Probing Substrate-Loaded Carrier Proteins by Nuclear Magnetic Resonance.
通过核磁共振探测负载底物的载体蛋白。
- DOI:10.1007/978-1-0716-3214-7_12
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Arya,Neeru;Marincin,KennethA;Frueh,DominiqueP
- 通讯作者:Frueh,DominiqueP
Covariance nuclear magnetic resonance methods for obtaining protein assignments and novel correlations.
用于获得蛋白质分配和新相关性的协方差核磁共振方法。
- DOI:10.1002/cmr.a.21437
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Kancherla,AswaniK;Frueh,DominiqueP
- 通讯作者:Frueh,DominiqueP
Facilitated assignment of large protein NMR signals with covariance sequential spectra using spectral derivatives.
使用光谱导数促进大蛋白质 NMR 信号与协方差序列光谱的分配。
- DOI:10.1021/ja5058407
- 发表时间:2014-09-24
- 期刊:
- 影响因子:15
- 作者:Harden, Bradley J.;Nichols, Scott R.;Frueh, Dominique P.
- 通讯作者:Frueh, Dominique P.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dominique Pascal Frueh其他文献
Dominique Pascal Frueh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dominique Pascal Frueh', 18)}}的其他基金
NMR studies of heterocyclization and epimerization in yersiniabactin synthesis
耶尔森菌素合成中杂环化和差向异构化的 NMR 研究
- 批准号:
8421252 - 财政年份:2013
- 资助金额:
$ 34.39万 - 项目类别:
NMR studies of heterocyclization and epimerization in yersiniabactin synthesis
耶尔森菌素合成中杂环化和差向异构化的 NMR 研究
- 批准号:
8667485 - 财政年份:2013
- 资助金额:
$ 34.39万 - 项目类别:
Dynamic allosteric communication within nonribosomal peptide synthetase cyclization domains
非核糖体肽合成酶环化域内的动态变构通讯
- 批准号:
10387089 - 财政年份:2013
- 资助金额:
$ 34.39万 - 项目类别:
Dynamic allosteric communication within nonribosomal peptide synthetase cyclization domains
非核糖体肽合成酶环化域内的动态变构通讯
- 批准号:
10358654 - 财政年份:2013
- 资助金额:
$ 34.39万 - 项目类别:
NMR studies of heterocyclization and epimerization in yersiniabactin synthesis
耶尔森菌素合成中杂环化和差向异构化的 NMR 研究
- 批准号:
9066739 - 财政年份:2013
- 资助金额:
$ 34.39万 - 项目类别:
相似海外基金
MYCOBACTERIUM TUBERCULOSIS PHOSPHOPANTETHEINE ADENYLTRANSFERASE
结核分枝杆菌磷酸泛硫氨酸腺苷酸转移酶
- 批准号:
7182516 - 财政年份:2005
- 资助金额:
$ 34.39万 - 项目类别:














{{item.name}}会员




