Novel Systems Biology Methods for the Cell-type-specific Regulatory Networks Reconstruction from scRNA-seq Data
从 scRNA-seq 数据重建细胞类型特异性调控网络的新系统生物学方法
基本信息
- 批准号:10579768
- 负责人:
- 金额:$ 45.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-21 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:Advanced DevelopmentAlgorithmsAttenuatedBayesian ModelingBiological ProcessCell Differentiation processCellsCollaborationsComplexDataData AnalysesDetectionDiseaseEvolutionGene ExpressionGene Expression ProfilingGenesGenomeHeterogeneityIndividualIntelligenceMalignant NeoplasmsMeasuresMethodsModelingModernizationNetwork-basedPathogenesisPatientsPharmaceutical PreparationsPopulationResolutionSeriesStructureSystems BiologyTechniquesTechnologyTimeYeastsbasecell typecomputer studiesconvolutional neural networkdeep learningdetection methoddisease heterogeneityexperienceexperimental studygene expression variationhigh dimensionalityimprovedlong short term memorynovelpatient populationpersonalized medicinepublic health relevancereconstructionrecurrent neural networksingle-cell RNA sequencingtargeted treatmenttranscriptometranscriptome sequencing
项目摘要
Project Summary/Abstract
Complex diseases studies have revealed how specific cell types contribute to the evolution of
different diseases. Many drugs are not effective to a large population of patients due to the
cellular diversity. Modern single-cell RNA sequencing (scRNA-seq) technologies provide
opportunities to detect and dissect the heterogeneity in cells, enable us to measure the gene
expression level of thousands of individual cells in a single experiment. Comprehensive analysis
of scRNA-seq data and correct reconstruction of cell-type-specific regulatory networks could
help develop personalized and targeted treatment of some complex diseases for different
patients. So, the scRNA-seq has more advantages than the traditional bulk RNA-seq. Most of
genome and computational studies are based on the traditional bulk RNA sequencing data,
which measure the average expression of the cell population, without examining the cell-type-
specific expression profiles. There are several challenges in the scRNA-seq data analysis and
cell-type-specific regulatory network reconstruction. The first challenge is, there are a large
amount of missing values in the scRNA-seq data, which will attenuate the power and
advantages of scRNA-seq, and make it difficult to correctly reconstruct a cell-type-specific
network. We propose novel data-driven deep generative modeling methods to impute (estimate)
the missing static and time-series scRNA-seq data without making certain distribution
assumptions for the missing values. Some studies have revealed that the regulatory networks
undergo systematic rewiring at different stages. It is of importance to know how many stages
the cell has experienced, and when the stage transition starts to occur from the high-
dimensional scRNA-seq data, which is the second challenge problem—change-points detection.
We propose to develop an adversarial network-based method to identify the change-points
without introducing model parameters. Another challenge is how to correctly reconstruct and
intelligently validate the cell-type-specific regulatory networks from the scRNA-seq data, and
identify key regulatory components that contribute to the network rewiring during stage
transition. We propose to integrate the deep generative modeling methods and change-points
detection algorithm with our weighted dynamic Bayesian network and Model Checking
technique in a unified framework to reconstruct cell-type-specific regulatory networks. Our
studies will improve our understanding of regulatory network dynamics, and provide a key to
discovering the mechanisms underlying the pathogenesis of diseases.
项目总结/摘要
复杂疾病的研究揭示了特定细胞类型如何促进
不同的疾病。许多药物对大量患者无效,
细胞多样性现代单细胞RNA测序(scRNA-seq)技术提供了
检测和剖析细胞异质性的机会,使我们能够测量基因
在一个实验中成千上万的单个细胞的表达水平。综合分析
scRNA-seq数据和细胞类型特异性调控网络的正确重建可以
帮助开发个性化和针对性的治疗一些复杂的疾病,
患者因此,scRNA-seq比传统的bulk RNA-seq具有更多的优势。大部分
基因组和计算研究是基于传统的批量RNA测序数据,
其测量细胞群体的平均表达,而不检查细胞类型,
特异性表达谱。scRNA-seq数据分析中存在若干挑战,
细胞类型特异性调节网络重建。第一个挑战是,
scRNA-seq数据中缺失值的数量,这将削弱功率,
scRNA-seq的优点,并使其难以正确地重建细胞类型特异性
网络我们提出了新的数据驱动的深度生成建模方法来估算(估计)
缺失的静态和时间序列scRNA-seq数据没有进行一定的分布
缺失值的假设。一些研究表明,
在不同的阶段经历系统的重新连接。重要的是要知道有多少阶段
当细胞经历了,并且当阶段转变开始从高-
三维scRNA-seq数据,这是第二个挑战问题-变化点检测。
我们建议开发一种基于对抗网络的方法来识别变点
而不引入模型参数。另一个挑战是如何正确重建和
从scRNA-seq数据智能验证细胞类型特异性调控网络,
确定在阶段期间有助于网络重新布线的关键监管组件
过渡我们建议将深层生成式建模方法和变点方法相结合
基于加权动态贝叶斯网络和模型检测的检测算法
在一个统一框架中的技术,以重建细胞类型特异性调节网络。我们
研究将提高我们对监管网络动态的理解,并提供一个关键,
发现疾病的发病机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Haijun Gong其他文献
Haijun Gong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Haijun Gong', 18)}}的其他基金
Novel Systems Biology Methods for the Cell-type-specific Regulatory Networks Reconstruction from scRNA-seq Data
从 scRNA-seq 数据重建细胞类型特异性调控网络的新系统生物学方法
- 批准号:
10798498 - 财政年份:2022
- 资助金额:
$ 45.45万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 45.45万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 45.45万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 45.45万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 45.45万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 45.45万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 45.45万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 45.45万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 45.45万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 45.45万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 45.45万 - 项目类别:
Continuing Grant