Simultaneous single-molecule optical and electrical measurements of ion channel ligand binding and pore gating
离子通道配体结合和孔门控的同时单分子光学和电学测量
基本信息
- 批准号:10575611
- 负责人:
- 金额:$ 7.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AnxietyAutomobile DrivingBehaviorBindingCardiacChemicalsCyclic GMPCyclic NucleotidesDNA Sequence AlterationDataDiseaseDissectionDrug TargetingElectrophysiology (science)EnsureEsthesiaEventFluorescenceFluorescence MicroscopyGeometryHeart RateImageImpairmentIndividualIon ChannelIon Channel GatingIonsLabelLigand BindingLigandsMeasuresMembraneMethodsMolecularMuscleMuscle ContractionNamesNatureNervous system structureNeurologicOpticsPainPatch-Clamp TechniquesPathway interactionsPharmaceutical PreparationsPharmacologyPhysiological ProcessesPositioning AttributePreparationProbabilityProcessReportingResearchResolutionResponse to stimulus physiologySensoryShapesSignal TransductionSiteSmell PerceptionStimulusSurfaceSynaptic TransmissionSystemTechniquesTransducersVisionVisualaddictionanalogchemical bindingconfocal imagingcyclic-nucleotide gated ion channelselectrical measurementfluorescence imagingimaging modalityinnovationmicromanipulatormolecular imagingmotor controlnanonanometernovel therapeuticspatch clamppressurerational designresponsesensorsingle moleculetherapy designthree dimensional structuretoolvoltagevoltage gated channel
项目摘要
PROJECT SUMMARY
Ligand-gated ion channels (LGICs) are molecular sensors that convert the chemical energy of ligand binding to
electrical impulses via ion flux through the channel pore. LGICs are essential for synaptic transmission
throughout the nervous system as well as cellular signaling in many other fundamental physiological processes
such as vision, olfaction, motor control and heart rate to name just a few. They are also major drug targets as
modulating channel behavior can be used to counteract a wide range of afflictions such as anxiety, addiction,
pain, muscle impairment, etc. Gating (opening/closing) of the channel pore is initiated upon binding of ligands,
often to multiple sites in distinct subunits or domains. Despite significant progress in understanding the 3-
dimensional structure of LGICs, there remains a critical gap in our understanding of how these domains
participate to shape the sequence of events by which chemical binding energy is transduced to gating of the ion
pore. A major barrier to bridging this gap is that the single-molecule methods needed to resolve the stochastic
binding and gating events only report on either the binding stimulus or the gating response, but not both as
required to understand the full stimulus-response pathway. To overcome this barrier, I will use an innovative
combination of micro-mirror total internal reflection fluorescence (mmTIRF) single-molecule imaging to optically
track individual binding events for a fluorescently labeled ligand while simultaneously recording ion conduction
through single channels in excised membrane patches with conventional patch clamp techniques. The objective
of this proposal is to establish the feasibility of this combined approach for activation of cyclic nucleotide gated
(CNG) channels critical for visual and olfactory sensation. The rationale is that the combination of mmTIRF and
single-channel recording will enable direct experimental correlation between distinct binding events at multiple
domains and the electrical gating response. Completion of this objective will 1) establish a facile approach for
probing the full stimulus-response pathway in LGICs at single-molecule resolution, and 2) determine the degree
to which energy from binding one or two cyclic nucleotides is transduced to opening of the pore gate. The
proposed research is significant because it will enable studies that probe the dynamic sequence of events
governing the transduction of chemical binding energy in multiple domains to gating of the ion pore, a process
which in many cases is only poorly understood. The approach developed in this proposal will be invaluable to
understanding the dynamic events by which ligands drive channel activity and which connect the dots between
static structural snapshots, and thereby will constitute a major step forward for the ion channel field. Furthermore,
it will have direct bearing on understanding the mechanisms of drugs that modulate channel behavior, which will
facilitate the rational design of novel therapeutic modulators.
项目摘要
配体门控离子通道(LGIC)是分子传感器,将配体结合的化学能转化为
通过通道孔通过离子通量进行电脉冲。 LGIC对于突触传输至关重要
在整个神经系统以及许多其他基本生理过程中的细胞信号传导
例如视觉,嗅觉,运动控制和心率仅举几例。它们也是主要的药物目标
调节通道行为可用于抵消各种痛苦,例如焦虑,成瘾,
疼痛,肌肉障碍等。在结合配体时,启动了通道孔的门控(打开/关闭),
通常在不同的亚基或域中的多个站点。尽管在理解3-的情况下取得了重大进展
LGIC的维度结构,我们对这些领域的理解中仍然存在一个危险的差距
参与以塑造将化学结合能转导为离子门控的事件的序列
毛孔。弥合此差距的主要障碍是解决随机的单分子方法
结合和门控事件仅报告结合刺激或门控反应
需要了解完整的刺激响应途径。为了克服这个障碍,我将使用创新
微晶格总内反射荧光(MMTIRF)单分子成像的组合与光学成像
跟踪荧光标记配体的单个结合事件,同时记录离子传导
通过使用常规贴片夹技术切除的膜贴片中的单个通道。目标
该建议的是建立这种联合方法激活环状核苷酸门的可行性
(CNG)通道对视觉和嗅觉至关重要。理由是mmtirf和
单通道记录将使多个不同的结合事件之间的直接实验相关
域和电控响应。完成此目标的完成1)建立一种便利的方法
在单分子分辨率下探测LGICS中的全部刺激 - 反应途径,并确定程度
从结合一个或两个环状核苷酸的能量转换为孔门的打开。这
拟议的研究很重要,因为它将实现探测事件动态序列的研究
管理多个结构域中化学结合能的转导向离子孔的门控,这一过程
在许多情况下,只有很少的理解。在本提案中开发的方法对于
了解配体驱动通道活动的动态事件以及连接点之间的点
静态结构快照将构成离子通道场的重要一步。此外,
它将直接取决于理解调节通道行为的药物的机制,这将
促进新型治疗调节剂的合理设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marcel Paz Goldschen-Ohm其他文献
Marcel Paz Goldschen-Ohm的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marcel Paz Goldschen-Ohm', 18)}}的其他基金
Mechanisms of stepwise activation and drug-modulation in ligand-gated ion channels.
配体门控离子通道的逐步激活和药物调节机制。
- 批准号:
10567165 - 财政年份:2022
- 资助金额:
$ 7.6万 - 项目类别:
Mechanisms of stepwise activation and drug-modulation in ligand-gated ion channels.
配体门控离子通道的逐步激活和药物调节机制。
- 批准号:
10710047 - 财政年份:2022
- 资助金额:
$ 7.6万 - 项目类别:
相似国自然基金
基于驾驶人行为理解的人机共驾型智能汽车驾驶权分配机制研究
- 批准号:52302494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
定性与定量分析跟驰行驶中汽车驾驶员情感-行为交互作用机理
- 批准号:71901134
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
兼顾效率与能效的城市道路智能网联汽车驾驶行为优化及实证研究
- 批准号:71871028
- 批准年份:2018
- 资助金额:46.0 万元
- 项目类别:面上项目
人机共驾型智能汽车驾驶行为特性及人机交互方法研究
- 批准号:51775396
- 批准年份:2017
- 资助金额:62.0 万元
- 项目类别:面上项目
汽车驾驶员疲劳的心理生理检测及神经机制
- 批准号:31771225
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Early life stress impacts molecular and network properties that bias the recruitment of pro-stress BLA circuits
早期生活压力会影响分子和网络特性,从而影响促压力 BLA 回路的募集
- 批准号:
10820820 - 财政年份:2023
- 资助金额:
$ 7.6万 - 项目类别:
Experimental evidence on the relationship between income and health
收入与健康关系的实验证据
- 批准号:
10587123 - 财政年份:2023
- 资助金额:
$ 7.6万 - 项目类别:
Investigating the impact of chronic stress on distinct axes of dopamine signaling
研究慢性压力对多巴胺信号传导不同轴的影响
- 批准号:
10825107 - 财政年份:2023
- 资助金额:
$ 7.6万 - 项目类别:
Developing and Testing a Cross-Cultural Measure of Gender Norms and Mental Health in Adolescence
开发和测试青春期性别规范和心理健康的跨文化衡量标准
- 批准号:
10727749 - 财政年份:2023
- 资助金额:
$ 7.6万 - 项目类别:
Exercised-induced modulation of insular cortex microcircuitry during alcohol abstinence
戒酒期间运动诱导的岛叶皮质微电路调节
- 批准号:
10748763 - 财政年份:2023
- 资助金额:
$ 7.6万 - 项目类别: