Defining New Pathways for Complex Human Heart Failure and Arrhythmia
定义复杂人类心力衰竭和心律失常的新途径
基本信息
- 批准号:10571151
- 负责人:
- 金额:$ 16.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-20 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:ANK2 geneANK3 geneActinsAdultAffectAnkyrinsAreaArrhythmiaBiologyCardiacCardiomyopathiesCardiovascular DiseasesCardiovascular systemCaringCellsChildClinicalCommunitiesComplexCongenital Cardiovascular AbnormalityCytoskeletonDataDefectDiagnosticDilated CardiomyopathyDiseaseElementsEtiologyEvaluationExhibitsFoundationsFunctional disorderGenesGoalsHeartHeart BlockHeart DiseasesHeart failureHeritabilityHumanIn VitroIntercalated discInvestigationIon ChannelLeft ventricular structureLinkMembraneMembrane ProteinsMentorsModelingMolecularMorphologyMusMuscle CellsMutationMyocardial ContractionMyocardial dysfunctionMyocardiumNeuronsPathologicPathway interactionsPatientsPersonsPhenotypePhysiciansPhysiologicalPlayPopulationPost-Translational Protein ProcessingProtein IsoformsProteinsRegulationRiskRoleScientistSignal TransductionSodium ChannelSpectrinStimulusStructureTestingThinnessTissuesVariantVentricular ArrhythmiaWorkbetaIV spectrincareercongenital heart disorderdisease natural historydisease phenotypegene productheart functionhuman diseaseimprovedin vivoinsightloss of functionloss of function mutationnovelrecruitresponsesudden cardiac deathtraining opportunityvoltage
项目摘要
Project Summary
Normal cardiac function requires synchronization of structural and electrical molecules within the heart.
Defects affecting cardiac excitability linked to sudden cardiac death affect ½ million people, and those affecting
contractile function, such as in the case of cardiomyopathy, impact another 5.7 million patients in the U.S. each
year. However, often overlooked are cardiovascular (CV) phenotypes that result in both electrical and contractile
dysfunction. This relationship between contractile and electrical elements is critically important to understand in
the patient with congenital heart disease (CHD). There are now more adults (ACHD) living with CHD than
children, and in this population the most common late manifestation of CHD is a severely complex phenotype
hallmarked by both heart failure and arrhythmia. The ACHD community recognizes the importance of each of
these entities, and has set forth high-priority areas of study surrounding heart failure and arrhythmia, with the
goal of using models aimed at the ‘cellular keystones underlying CHD’. This proposal embraces that focus,
shifting from the study of each of these late CV sequela independently, and taking a broader look at the complex
CHD phenotypes that result in both electrical and contractile dysfunction. We have identified a molecule which
we believe has both CV electrical and contractile consequences, thereby serving as a good foundational model
to study complex phenotypes resulting in combination arrhythmia and heart failure. Ankyrins are a membrane-
associated protein directly linked with targeting ion channels in myocytes, neurons and other excitable cells. In
heart, ankyrins-B and –G, which function to support myocyte actin/spectrin in the cytoskeleton and function in
cellular organization, transport, gating and post-translational modification, are associated with critical membrane
ion channels. Canonical AnkG is required for normal NaV1.5 channel targeting in the heart. However, we have
identified a novel ‘giant’ cardiac ankyrin-G isoform that we implicate is critical for normal cardiac structure,
contractility and electrical conduction. Mice lacking ‘Giant AnkG’ display a dilated and thinned left ventricle with
reduced systolic function, consistent with a dilated cardiomyopathy phenotype. These same mice also exhibit
electrical dysfunction including ventricular arrhythmia and high-degree heart block. Our new preliminary data
support our central hypothesis: A single ankyrin gene produces two separate molecules- each with unique roles
in cardiac structural and electrical function. We hypothesize that novel cardiac Giant AnkG functions via a unique
sodium-channel independent mechanism leading to regulation myocyte structure, membrane organization and
abnormal intra- and inter-cellular signaling. Ultimately, loss of function of this large gene product leads to altered
myocardial contraction and defective electrical function.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elisa Ann Bradley其他文献
Elisa Ann Bradley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elisa Ann Bradley', 18)}}的其他基金
Defining New Pathways for Complex Human Heart Failure and Arrhythmia
定义复杂人类心力衰竭和心律失常的新途径
- 批准号:
10617851 - 财政年份:2020
- 资助金额:
$ 16.09万 - 项目类别:














{{item.name}}会员




