Elucidating the role of mechanical forces in diabetic wound healing

阐明机械力在糖尿病伤口愈合中的作用

基本信息

  • 批准号:
    10573042
  • 负责人:
  • 金额:
    $ 15.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2027-04-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY / ABSTRACT Diabetes profoundly impairs the tissue repair process, leading to chronic non-healing wounds, which represent a leading cause of lower limb amputations. The role of vascular pathology in impaired diabetic wound healing (“under healing”) has been well established, and the role of external mechanical forces across wounds in promoting excessive scar formation (“over healing”) is similarly well studied. However, the mechanisms through which these countervailing systems interact within diabetic tissue to yield non-healing skin ulcers have yet to be thoroughly examined. During prior years of NIH-funded research, important contributions have been made to our knowledge of the critical role of vascular progenitor cells in normal and diabetic wound healing. These include the first studies on single cell analysis of diabetic subpopulations during wound healing in both mice and humans, which identified specific cell subtype depletions that contribute to impaired blood vessel formation and delayed healing. More recently, the role of mechanoresponsive fibroblast populations in driving excessive skin scarring and ineffective wound closure has been examined in similar pathologic states. To understand the effects of diabetes and mechanical force on cell population dynamics with greater precision, we have developed novel single cell techniques to identify critical perturbations in cell subpopulations. In this proposal, we will apply these emerging -omics technologies to characterize the behavior of cell populations in non-healing diabetic wounds. It is our fundamental hypothesis that local tissue mechanical forces contribute to the disruption of cellular ecology in diabetic wound healing and that mitigation of these forces can improve healing. To achieve this, we will first employ a novel multiplex approach to high-throughput single cell sequencing to evaluate changes to cell populations in human diabetic wounds healing under different mechanical environments (Specific Aim 1). We will then confirm the changes in human diabetic cell populations using animal models, while more precisely assessing the effect of skin tension on healing kinetics (Specific Aim 2), which will further clarify the functional role of these cells. Finally, we will use real world data (RWD) from electronic health records to evaluate the efficacy of therapies aimed at offsetting mechanical forces, in order to develop clinical models to guide treatment strategies (Specific Aim 3). Collectively, this work will enhance our understanding of diabetic wound biology and its interaction with the external mechanical environment, paving the way for future therapeutic approaches, while also providing generalizable clinical recommendations for force offloading therapies that can be readily applied to guide treatment decisions at wound centers across the United States. The studies described in this proposal reflect the multi-faceted approach to translational medical research that I hope to achieve moving forward in my career as a clinician scientist.
项目摘要/摘要 糖尿病严重损害组织修复过程,导致慢性不愈合伤口,这代表了 导致下肢截肢的主要原因。糖尿病伤口愈合障碍中血管病理学的作用 (“愈合不足”)已经得到了很好的确立,并且外部机械力在伤口愈合中的作用已经得到了证实。 促进过度瘢痕形成(“过度愈合”)也同样得到了充分研究。然而,通过 这些抵消系统在糖尿病组织内相互作用产生不愈合的皮肤溃疡 彻底检查。在NIH资助的研究的前几年,我们已经做出了重要贡献, 了解血管祖细胞在正常和糖尿病伤口愈合中的关键作用。这些包括 在小鼠和人的伤口愈合期间对糖尿病亚群进行单细胞分析的第一项研究, 该研究确定了导致血管形成受损和延迟的特定细胞亚型缺失, 治愈最近,机械反应性成纤维细胞群在驱动过度皮肤瘢痕形成中的作用 和无效的伤口闭合已经在类似的病理状态下进行了检查。为了了解 糖尿病和机械力对细胞群体动力学的影响具有更高的精度,我们已经开发了新的 单细胞技术来识别细胞亚群中的关键扰动。在本提案中,我们将应用这些 新兴的组学技术来表征非愈合糖尿病伤口中细胞群的行为。它 是我们的基本假设,即局部组织机械力有助于细胞生态的破坏, 且减轻这些力可以改善愈合。为了实现这一目标,我们将首先 采用一种新的多重方法进行高通量单细胞测序, 在不同的机械环境下人类糖尿病伤口愈合的人群(具体目标1)。我们 然后将使用动物模型证实人类糖尿病细胞群的变化, 评估皮肤张力对愈合动力学的影响(具体目标2),这将进一步阐明皮肤张力对愈合动力学的功能影响。 这些细胞的作用。最后,我们将使用来自电子健康记录的真实的世界数据(RWD)来评估 旨在抵消机械力的疗法的有效性,以开发临床模型来指导治疗 具体目标(3)。总的来说,这项工作将提高我们对糖尿病伤口生物学的理解, 它与外部机械环境的相互作用,为未来的治疗方法铺平了道路, 还为易于应用的力卸载疗法提供了可推广的临床建议 来指导美国各地创伤中心的治疗决策。本提案中所述的研究 反映了多方面的方法,以转化医学研究,我希望实现在我的前进 作为临床科学家的职业生涯。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Januszyk其他文献

Michael Januszyk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 15.01万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 15.01万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 15.01万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 15.01万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 15.01万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 15.01万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 15.01万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 15.01万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了