Theoretical and Physiological Basis of Priority Maps in the Frontal Eye Field
额叶眼场优先级图的理论和生理基础
基本信息
- 批准号:10578673
- 负责人:
- 金额:$ 4.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAssociation LearningBasal GangliaBehaviorBehavioralBrainCharacteristicsCognitiveComplexComputer SimulationCuesDataDiseaseEyeEye MovementsGoalsKnowledgeLearningMapsMeasurementMeasuresModelingMonkeysMotorMovementNeuronsOutcomePhysiologicalProbabilityPropertyRecording of previous eventsRewardsSaccadesSchizophreniaSensoryServicesShapesSignal TransductionSourceStimulusTestingTimeVisionVisualVisual FieldsVisual SystemWorkautism spectrum disorderdesignexpectationexperienceexperimental studyflexibilityfovea centralisfrontal eye fieldsimprovedin silicoin vivointerestneurophysiologynoveloculomotor behaviorpredictive modelingreceptive fieldresponsesimulationskillssuperior colliculus Corpora quadrigeminatheoriestraining opportunityvisual motorvisual searchvisual stimulus
项目摘要
Project Summary
Each movement of the eyes is the outcome of a competition between the stimulus at the fovea, the target of the
movement, and other potential targets. The frontal eye field (FEF) is thought to maintain a map of priority for
saccadic eye movements, combining information about the salience of stimuli with their behavioral relevance to
guide the flow of eye movements. The objective of this work is to understand how priority maps form in FEF. The
overall hypothesis is that FEF neurons form these maps by learning to anticipate saccades and as a result,
integrate a wide range of sensory, motor, and cognitive signals into a singular representation that reflects
expectations about the timing and probability of saccades. Recently, we developed a novel simulation of
associative learning during natural oculomotor behavior that permits measurement of the visuomotor properties
of neurons that arise from a given learning goal. The first aim is to use this simulation to determine if FEF neurons
in silico develop visuomotor properties like FEF neurons in vivo when they learn to anticipate saccades. We will
simulate several FEF networks, each designed to learn distinct goals related to oculomotor behavior and
characterize the properties that develop in each. Our preliminary data suggests that when neurons anticipate
movement goals, their visuomotor properties capture many important characteristics of FEF neurons.
Specifically, the modeled neurons develop dual visual- and movement-related responses, their visual sensitivity
shifts across space around the time of saccades, and they respond more vigorously when visual stimulus in their
receptive field is the target of a saccade. Furthermore, both the visual and movement responses are relatively
early, consistent with a short-latency subpopulation of FEF neurons. The second aim is to assess a prediction
of the model, that expectations about saccades are encoded in FEF visual responses. To do this, we will record
single-neuron activity in the FEF of monkeys while they complete blocks of a delayed saccade Go/NoGo task.
The model predicts that manipulations of the probability or time at which a saccade follows a visual stimulus will
modify subsequent visual responses. The third aim is to determine how reward affects the visual sensitivity of
FEF neurons. We will alter the reward contingences in the Go/NoGo task to test if FEF neurons encode reward-
related information or if their apparent sensitivity to reward is at the service of encoding movement-related
information. The outcomes of the second and third aims will be applied to improve the model as needed and
generate new predictions. Collectively, this work will establish how the visual responses of FEF neurons are
shaped by experience about saccades and reward and provide a rigorous basis for understanding the formation
of priority maps in FEF. This basic knowledge is a prerequisite to identifying the source of deficits in saccadic
behavior in disorders like schizophrenia and autism. Through training opportunities during this project, I will
develop the skills necessary to transition from computational to experimental research.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anthony James Alers其他文献
Anthony James Alers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anthony James Alers', 18)}}的其他基金
Theoretical and Physiological Basis of Priority Maps in the Frontal Eye Field
额叶眼场优先级图的理论和生理基础
- 批准号:
10389556 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 4.01万 - 项目类别:
Continuing Grant