Probing visual computations and electrical stimulation in the central macaque retina for high fidelity vision restoration
探测中央猕猴视网膜的视觉计算和电刺激以实现高保真视力恢复
基本信息
- 批准号:10578664
- 负责人:
- 金额:$ 4.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-20 至 2025-01-19
- 项目状态:未结题
- 来源:
- 关键词:AffectAxonBlindnessBrainCellsCodeCommunicationCustomDataData SetDevelopmentDevicesElectric StimulationElectrodesExcisionExhibitsEye MovementsFrequenciesFutureGoalsGrainImageImplantIndividualInner Limiting MembraneLaboratoriesLightMacacaMethodsModelingModernizationMonkeysPatternPerformancePeripheralPhotic StimulationPrimatesPropertyProsthesisProsthesis DesignReaction TimeResearchResolutionRetinaRetinal Ganglion CellsSignal TransductionStructureTechnologyTestingTrainingVisionVisualVisual AcuityVisually Impaired PersonsWorkcell typedensitydisabilityelectric fieldexperimental studyimage reconstructionimprovedinterestmulti-electrode arraysneuralperformance testsphotoreceptor degenerationprototypereceptive fieldreconstructionresponseretina implantationretinal prosthesisretinal stimulationsight restorationsimulationspatiotemporalvisual coding
项目摘要
Project Summary/Abstract
Blindness resulting from photoreceptor degeneration is a leading cause of disability. A primary treatment option
is the use of epiretinal prostheses, which directly activate retinal ganglion cells (RGCs), sending artificial visual
signals to the brain. However, vision restoration with current-day epiretinal prostheses is limited, due to the
coarse-grained stimulation that fails to replicate natural, light-evoked RGC activation patterns. In natural vision,
~20 functionally-distinct RGC types communicate unique representations of the visual world to the brain
through coordinated and precise cell type-specific patterns of activity. Modern implants don’t produce
high-acuity vision in part because they fail to elicit naturalistic RGC responses, due to coarse and nonspecific
stimulation. The goal of my research is to determine how well vision can be restored in the central retina by
analyzing the responses of primate RGCs to visual and electrical stimulation.
To accomplish this goal, I will first conduct ex vivo experiments in the central retina of the macaque monkey
with visual and electrical stimulation while recording with a high-density multi-electrode array. After identifying
the major functionally-distinct cell types, we will then characterize their spatiotemporal light response properties
and determine how they differ from cells of the same types in the peripheral retina. I will also compare how well
features from natural images are represented by central and peripheral RGCs of the major types. Next, to
determine how well central RGCs can be electrically activated, I will determine the electrical receptive fields for
each cell as well as quantify the extent to which RGCs of each type can be stimulated selectively. We will then
test the degree to which RGCs of major types in the central retina can be activated without activating axon
bundles. To achieve better electrical access to RGCs in the central retina, I will test whether removing the inner
limiting membrane decreases stimulation thresholds and enhances selective activation. In cases in which
selective activation of RGCs is unattainable with single-electrode stimulation, I will test whether tri-electrode
stimulation can better focus the electric field on a cell of interest through current steering to enhance selective
activation. Finally, to estimate how well high-resolution vision can be restored with a future implant targeting the
central retina, we will develop a simulation by aggregating the visual and electrical response properties across
many data sets and perform image reconstruction analyses to quantify the structural details of images that can
be perceived.
项目总结/摘要
光感受器退化导致的失明是残疾的主要原因。主要治疗选择
是使用视网膜前假体,直接激活视网膜神经节细胞(RGC),发送人工视觉
向大脑发出信号。然而,目前的视网膜前假体的视力恢复是有限的,这是由于
粗粒刺激无法复制自然的光诱发RGC激活模式。在自然视觉中,
~20种功能不同的RGC类型将视觉世界的独特表征传达给大脑
通过协调和精确的细胞类型特异性活动模式。现代植入物不会产生
高敏度视力的部分原因是它们不能引起自然的RGC反应,这是由于粗糙和非特异性的
刺激.我的研究目标是确定如何以及视力可以恢复在中央视网膜,
分析灵长类RGCs对视觉和电刺激的反应。
为了实现这一目标,我将首先在猕猴的中央视网膜进行离体实验
在使用高密度多电极阵列记录的同时,使用视觉和电刺激。在确定
主要的功能不同的细胞类型,然后我们将表征其时空光响应特性
并确定它们与周边视网膜中相同类型的细胞有何不同。我也会比较
来自自然图像的特征由主要类型的中央和外围RGC表示。接下来,
为了确定中央RGC可以被电激活的程度,我将确定电感受野,
每个细胞以及量化每种类型的RGC可以被选择性刺激的程度。然后我们将
测试在不激活轴突的情况下,中央视网膜中主要类型的RGC可以被激活的程度
捆起来。为了实现对中央视网膜RGC的更好的电通路,我将测试是否去除内部
限制膜降低刺激阈值并增强选择性激活。的情况下
RGC的选择性激活是单电极刺激无法实现的,我将测试三电极刺激是否
刺激可以通过电流导向更好地将电场集中在感兴趣的细胞上
activation.最后,为了评估未来植入物对高分辨率视力的恢复效果,
中央视网膜,我们将开发一个模拟聚合的视觉和电响应特性,
许多数据集,并执行图像重建分析,以量化图像的结构细节,
被感知。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alex Richard Gogliettino其他文献
Alex Richard Gogliettino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alex Richard Gogliettino', 18)}}的其他基金
Probing visual computations and electrical stimulation in the central macaque retina for high fidelity vision restoration
探测中央猕猴视网膜的视觉计算和电刺激以实现高保真视力恢复
- 批准号:
10386407 - 财政年份:2022
- 资助金额:
$ 4.05万 - 项目类别:
相似海外基金
An atypical microtubule generation mechanism for neurons drives dendrite and axon development and regeneration
神经元的非典型微管生成机制驱动树突和轴突的发育和再生
- 批准号:
23K21316 - 财政年份:2024
- 资助金额:
$ 4.05万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Characterizing Wnt Signaling Pathways in Axon Guidance
轴突引导中 Wnt 信号通路的特征
- 批准号:
10815443 - 财政年份:2023
- 资助金额:
$ 4.05万 - 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
- 批准号:
10896844 - 财政年份:2023
- 资助金额:
$ 4.05万 - 项目类别:
Does phosphorylation regulation of the axon initial segment cytoskeleton improve behavioral abnormalities in ADHD-like animal models?
轴突起始段细胞骨架的磷酸化调节是否可以改善 ADHD 样动物模型的行为异常?
- 批准号:
23KJ1485 - 财政年份:2023
- 资助金额:
$ 4.05万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: Evolution of ligand-dependent Robo receptor activation mechanisms for axon guidance
合作研究:用于轴突引导的配体依赖性 Robo 受体激活机制的进化
- 批准号:
2247939 - 财政年份:2023
- 资助金额:
$ 4.05万 - 项目类别:
Standard Grant
Loss-of-function variants of the axon death protein SARM1 and protection from human neurodegenerative disease
轴突死亡蛋白 SARM1 的功能丧失变体和对人类神经退行性疾病的保护
- 批准号:
2891744 - 财政年份:2023
- 资助金额:
$ 4.05万 - 项目类别:
Studentship
Understanding the degeneration of axon and nerve terminals in Alzheimer's disease and related dementia brain
了解阿尔茨海默病和相关痴呆大脑中轴突和神经末梢的变性
- 批准号:
10661457 - 财政年份:2023
- 资助金额:
$ 4.05万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 4.05万 - 项目类别:
Unlocking BIN1 function in oligodendrocytes and support of axon integrity
解锁少突胶质细胞中的 BIN1 功能并支持轴突完整性
- 批准号:
10901005 - 财政年份:2023
- 资助金额:
$ 4.05万 - 项目类别:
The role of RNA methylation in cytoskeleton regulation during axon development
RNA甲基化在轴突发育过程中细胞骨架调节中的作用
- 批准号:
22KF0399 - 财政年份:2023
- 资助金额:
$ 4.05万 - 项目类别:
Grant-in-Aid for JSPS Fellows