From proteins to cells to tissues: A multi-scale assessment of biomechanical regulation by the myosin molecular motor
从蛋白质到细胞再到组织:肌球蛋白分子马达生物力学调节的多尺度评估
基本信息
- 批准号:10584005
- 负责人:
- 金额:$ 8.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-15 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:ATP HydrolysisATP phosphohydrolaseActinsAddressAffectAnimal ModelBiologicalBiological AssayBiological ModelsBiologyBiomechanicsBiophysical ProcessBiophysicsCardiac MyocytesCardiac MyosinsCell fusionCell physiologyCellsCellular StructuresClustered Regularly Interspaced Short Palindromic RepeatsCollaborationsComplementComputer ModelsDataDevelopmentDiseaseEmbryonic DevelopmentEngineeringFutureGene ExpressionGenerationsGoalsGrowthHeartHereditary DiseaseHomeostasisHumanHuman EngineeringIndividualKineticsKnowledgeLeadLengthLinkMaintenanceMeasurementMechanicsMethodsMicrofilamentsMissionModelingMolecularMolecular MotorsMolecular TargetMotorMuscleMuscle CellsMuscle DevelopmentMuscle FibersMuscle functionMutationMyocardiumMyofibrilsMyosin ATPaseMyosin Heavy ChainsNational Institute of General Medical SciencesOrganOrganellesPerformancePhenotypePhysiologicalPilot ProjectsPoint MutationPositioning AttributeProductionPropertyProteinsProtocols documentationRecombinantsRegulationResearchResearch PersonnelSarcomeresShapesSignal PathwaySignal TransductionSkeletal MuscleSkinStructureSubgroupSumTechniquesTestingThick FilamentTissue constructsTissuesTranslatingWorkWorking strokebiomechanical testbody systemcell motilitydisease phenotypedisease-causing mutationexperimental studyhigh throughput screeninghuman diseaseinduced pluripotent stem cellinnovationinsightlensmechanical forcemechanical propertiesmultidisciplinarynew therapeutic targetoptical trapsprogramsprotein structureprotein structure functionprototypesensorsingle moleculeskeletalskeletal stem cellstem cell modelsuccesstranscriptome sequencing
项目摘要
PROJECT SUMMARY/ABSTRACT
The overarching goal of this project is to use myosin as a model system in which to address the fundamental
biological question of how alterations in tissue organization and function can arise from often subtle changes in
function at the molecular level. Force generation by myosin is required not only for the physiological functions of
skeletal muscle and the heart, but also for the proper development and maintenance of these tissues during
embryogenesis and beyond. Our team aims to develop a detailed mechanistic understanding of how force
generation by myosin acts to regulate muscle tissue development and homeostasis. We examine this general
question through the lens of asking how seemingly small changes in the activity of individual myosin molecules
can drive dramatic changes in tissue-level organization and function, for example in the context of inherited
disease. In Aim 1, we will determine how structural changes in myosin affect the chemo-mechanical properties
of the myosin-actin interaction for individual and small assemblies of motor proteins. This aim will leverage
innovative techniques developed by our team to quantify biomechanical changes induced by myosin mutations
at the single molecule level and the corresponding consequences for sarcomere-level structure and function. In
Aims 2 and 3, we will determine how changes in myosin kinetics and force production influence the growth,
maturation, and function of cells and tissues, using cardiomyocytes and skeletal myocytes as model systems.
These aims will leverage CRISPR-editing to introduce myosin mutations in isogenic hiPSC-derived cardiac and
skeletal myocytes. We will then be able to compare biomechanical alterations at the individual molecule level
with those in sub-cellular organelles (myofibrils), cells and micro-tissues. We expect to answer basic mechanistic
questions as to how alterations in protein structure and function affect cell and tissue function, changing force
and plasticity, and provide a window into understanding how cells adapt to alterations in changing mechanical
forces. We will then be positioned to utilize our hiPSC platforms for high-throughput screens to develop novel
therapies targeted to phenotypic subgroups of myosin mutations. Another major goal of our Research Program
is to support Early Stage Investigators (ESI). We will support pilot studies from ESI investigators that explore
innovative research questions relevant to our Research Program. Critical to the NIGMS mission, our team’s
multi-disciplinary integrated approach, spanning the scale from individual molecules to sub-cellular structures to
whole cells to engineered micro-tissues, will serve as a prototype for teams undertaking future studies using
hiPSCs to explore other biological protein assemblies, using human disease-producing mutations as
perturbations to define their molecular and functional mechanisms across organ systems.
项目摘要/摘要
这个项目的首要目标是使用肌球蛋白作为一个模型系统,在这个系统中解决基本的
一种生物学问题,即组织组织和功能的改变是如何由组织结构和功能的微妙变化引起的
在分子水平上发挥作用。肌球蛋白产生的力量不仅是
骨骼肌和心脏,也对这些组织的适当发展和维持在
胚胎发生和更远的。我们团队的目标是开发一种详细的机械学理解
肌球蛋白产生的作用是调节肌肉组织的发育和动态平衡。我们检查一下这位将军
通过询问单个肌球蛋白分子的活性看起来很小的变化来提问
可以推动组织级别的组织和功能的戏剧性变化,例如在遗传的背景下
疾病。在目标1中,我们将确定肌球蛋白的结构变化如何影响化学机械性能。
肌球蛋白-肌动蛋白相互作用的单个和小组装的马达蛋白。这一目标将对
我们团队开发的用于量化肌球蛋白突变引起的生物力学变化的创新技术
在单分子水平上,以及对肌节水平结构和功能的相应后果。在……里面
目标2和3,我们将确定肌球蛋白动力学和作用力的变化如何影响生长,
细胞和组织的成熟和功能,以心肌细胞和骨骼肌细胞为模型系统。
这些目标将利用CRISPR编辑在等基因的HiPSC来源的心脏和
骨骼肌细胞。然后,我们将能够在单个分子水平上比较生物力学变化
在亚细胞器(肌原纤维)、细胞和微组织中。我们希望回答基本的机械原理
关于蛋白质结构和功能的改变如何影响细胞和组织功能,改变力量的问题
和可塑性,并为理解细胞如何适应机械变化中的变化提供了一个窗口
力量。然后,我们将利用我们用于高通量屏幕的HiPSC平台来开发新的
针对肌球蛋白突变表型亚群的治疗。我们研究计划的另一个主要目标
是为了支持早期调查人员(ESI)。我们将支持ESI调查人员进行的初步研究,以探索
与我们的研究计划相关的创新研究问题。对NIGMS任务至关重要,我们团队的
多学科综合方法,从单个分子到亚细胞结构,再到
从整个细胞到工程化的微观组织,将作为团队进行未来研究的原型
HiPSCs探索其他生物蛋白组合,使用人类致病突变作为
以确定其跨器官系统的分子和功能机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Bernstein其他文献
Daniel Bernstein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Bernstein', 18)}}的其他基金
RE-ENERGIZE FONTAN - RandomizEd Exercise INtERvention desiGned to MaximIZE Fitness in Pediatric FONTAN patients
重新激活 FONTAN - 随机运动干预旨在最大限度地提高儿童 FONTAN 患者的健康状况
- 批准号:
10589103 - 财政年份:2020
- 资助金额:
$ 8.49万 - 项目类别:
RE-ENERGIZE FONTAN - RandomizEd Exercise INtERvention desiGned to MaximIZE Fitness in Pediatric FONTAN patients
重新激活 FONTAN - 随机运动干预旨在最大限度地提高儿童 FONTAN 患者的健康状况
- 批准号:
9893292 - 财政年份:2020
- 资助金额:
$ 8.49万 - 项目类别:
RE-ENERGIZE FONTAN - RandomizEd Exercise INtERvention desiGned to MaximIZE Fitness in Pediatric FONTAN patients
重新激活 FONTAN - 随机运动干预旨在最大限度地提高儿童 FONTAN 患者的健康状况
- 批准号:
10378166 - 财政年份:2020
- 资助金额:
$ 8.49万 - 项目类别:
RE-ENERGIZE FONTAN - RandomizEd Exercise INtERvention desiGned to MaximIZE Fitness in Pediatric FONTAN patients
重新激活 FONTAN - 随机运动干预旨在最大限度地提高儿童 FONTAN 患者的健康状况
- 批准号:
10274780 - 财政年份:2020
- 资助金额:
$ 8.49万 - 项目类别:
From proteins to cells to tissues: A multi-scale assessment of biomechanical regulation by the myosin molecular motor
从蛋白质到细胞再到组织:肌球蛋白分子马达生物力学调节的多尺度评估
- 批准号:
10291393 - 财政年份:2019
- 资助金额:
$ 8.49万 - 项目类别:
From proteins to cells to tissues: A multi-scale assessment of biomechanical regulation by the myosin molecular motor
从蛋白质到细胞再到组织:肌球蛋白分子马达生物力学调节的多尺度评估
- 批准号:
10396504 - 财政年份:2019
- 资助金额:
$ 8.49万 - 项目类别:
From proteins to cells to tissues: A multi-scale assessment of biomechanical regulation by the myosin molecular motor
从蛋白质到细胞再到组织:肌球蛋白分子马达生物力学调节的多尺度评估
- 批准号:
10615077 - 财政年份:2019
- 资助金额:
$ 8.49万 - 项目类别:
hiPSC-Cardiomyocytes to Screen Variants Predictive of Doxorubicin Cardiotoxicity
hiPSC-心肌细胞筛选预测阿霉素心脏毒性的变异体
- 批准号:
8909180 - 财政年份:2014
- 资助金额:
$ 8.49万 - 项目类别:














{{item.name}}会员




