Developmental and genetic mechanisms of diversity and disease
多样性和疾病的发育和遗传机制
基本信息
- 批准号:10582045
- 负责人:
- 金额:$ 4.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAnatomyAnimal ModelAnimalsBeakBiological ModelsBiologyCandidate Disease GeneChromosome MappingColumbidaeComplexCongenital AbnormalityDNA SequenceDefectDevelopmentDevelopmental BiologyDiseaseEnhancersEquipmentExhibitsEyeEye DevelopmentFaceFeathersForelimbFundingGene MutationGenesGeneticGenetic studyGenomicsGoalsHealthHereditary DiseaseHereditary Malignant NeoplasmHigh-Throughput RNA SequencingHindlimbHumanLaboratoriesLimb DevelopmentLimb structureLinkMapsModelingMolecularMorphologyMutationPathogenesisPigmentation physiologic functionPigmentsPlayResearchRock PigeonsRoleShapesSkeletonSkinStructureSystemTestingVariantVertebratesWorkcraniofacialcraniofacial disorderdevelopmental geneticsfootgene discoverygene regulatory networkgenome wide association studyhereditary blindnessinnovationmalformationmutantskin colortraittranscriptome
项目摘要
PROJECT SUMMARY
Understanding the molecular basis of anatomical variation is a fundamental challenge in biology. In
some cases, the genes that control anatomical defects in humans underlie normal variation in other species;
therefore, a comprehensive understanding of the general molecular mechanisms of diversity promises a
greater understanding of human health. I have pioneered molecular developmental and genetic studies of
domestic pigeons as a model for dramatic anatomical variation. In just a few years, we have made rapid
progress to discover the molecular underpinnings of complex traits in pigeons, including the discovery that
genes underlying hereditary disease and cancer in humans also play key roles in animal diversity.
This project seeks to deepen and broader our understanding of the molecular basis of typical and
abnormal variation. The pigeon is an ideal system in which to pursue these goals because it features
tremendous morphological variation within a single species, thereby facilitating genome-wide association
studies, traditional genetic mapping, and functional developmental biology. First, we will identify the regulatory
mechanisms that control forelimb and hindlimb identity. In certain breeds of domestic pigeon, our genetic
mapping and developmental studies show that regulatory changes in two genes are associated with the
replacement of scales by feathers on the feet. In humans, mutations in these same genes cause striking limb
malformations. We will identify specific mutations causing regulatory changes in pigeons by testing enhancer
constructs in ovo, and use high-throughput RNA sequencing to identity the downstream gene regulatory
networks that control limb identity. Second, we will map the genes controlling major changes in craniofacial
size and shape through genome-wide association scans and genetic mapping in laboratory crosses. We will
use functional testing of candidate genes and transcriptome profiling to identify the molecular basis of radical
variation in beak structures. The craniofacial skeleton of pigeons shows spectacular variation among breeds,
and abnormal development of these same structures accounts for one-third of human birth defects. Therefore,
understanding the molecular basis of this variation is critical to understanding of both natural variation and
pathogenesis of human craniofacial disorders. Third, two classical pigeon mutants exhibit variation in both
pigmentation and eye development. Phenomenological links are well established between pigment variation
and eye development, but mechanistic links are often ambiguous. We have identified strong candidate genes
for both mutants, and will use pigeons and other canonical model organisms to functionally test the impact of
their altered expression.
Together, these complementary genetic, genomic, and developmental approaches will identify the
molecular basis of astonishing variation in an innovative model system, thereby opening new avenues to
understand the conserved roles of specific genes in normal and disease variation among vertebrates.
项目概要
了解解剖变异的分子基础是生物学的一个基本挑战。在
在某些情况下,控制人类解剖缺陷的基因是其他物种正常变异的基础;
因此,全面了解多样性的一般分子机制有望
对人类健康有更深入的了解。我开创了分子发育和遗传学研究
家鸽作为显着解剖变异的模型。短短几年时间,我们取得了飞速的发展
在发现鸽子复杂性状的分子基础方面取得了进展,包括发现
人类遗传性疾病和癌症的基因也在动物多样性中发挥着关键作用。
该项目旨在加深和拓宽我们对典型和
异常变异。鸽子是追求这些目标的理想系统,因为它具有
单个物种内巨大的形态变异,从而促进全基因组关联
研究、传统遗传图谱和功能发育生物学。首先我们要明确监管
控制前肢和后肢身份的机制。在某些品种的家鸽中,我们的遗传基因
绘图和发育研究表明,两个基因的调控变化与
脚上的羽毛取代了鳞片。在人类中,这些相同基因的突变会导致肢体瘫痪
畸形。我们将通过测试增强子来识别导致鸽子监管变化的特定突变
在卵内构建,并使用高通量 RNA 测序来识别下游基因调控
控制肢体身份的网络。其次,我们将绘制控制颅面部主要变化的基因图谱
通过全基因组关联扫描和实验室杂交中的遗传图谱来确定大小和形状。我们将
使用候选基因的功能测试和转录组分析来确定自由基的分子基础
喙结构的变化。鸽子的颅面骨骼在不同品种之间表现出惊人的差异,
这些相同结构的异常发育占人类出生缺陷的三分之一。所以,
了解这种变异的分子基础对于理解自然变异和
人类颅面疾病的发病机制。第三,两个经典鸽子突变体在两个方面都表现出变异
色素沉着和眼睛发育。色素变化之间的现象学联系已得到充分确立
和眼睛发育,但机制联系往往是模糊的。我们已经确定了强大的候选基因
对于这两种突变体,并将使用鸽子和其他典型模型生物来功能测试
他们的表情改变了。
总之,这些互补的遗传、基因组和发育方法将确定
创新模型系统中惊人变化的分子基础,从而开辟了新的途径
了解特定基因在脊椎动物正常和疾病变异中的保守作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael David Shapiro其他文献
Michael David Shapiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael David Shapiro', 18)}}的其他基金
Developmental and genetic mechanisms of diversity and disease
多样性和疾病的发育和遗传机制
- 批准号:
9922324 - 财政年份:2019
- 资助金额:
$ 4.85万 - 项目类别:
Developmental and genetic mechanisms of diversity and disease
多样性和疾病的发育和遗传机制
- 批准号:
10612993 - 财政年份:2019
- 资助金额:
$ 4.85万 - 项目类别:
Developmental and genetic mechanisms of diversity and disease
多样性和疾病的发育和遗传机制
- 批准号:
10388178 - 财政年份:2019
- 资助金额:
$ 4.85万 - 项目类别:
Developmental and genetic mechanisms of tissue identity and patterning
组织身份和模式的发育和遗传机制
- 批准号:
8945728 - 财政年份:2015
- 资助金额:
$ 4.85万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 4.85万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 4.85万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 4.85万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 4.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 4.85万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 4.85万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 4.85万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 4.85万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 4.85万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 4.85万 - 项目类别:
Studentship