Phenotyping Heart Failure through Analysis of Secondary Data
通过二手数据分析对心力衰竭进行表型分析
基本信息
- 批准号:10581057
- 负责人:
- 金额:$ 11.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-15 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:Artificial IntelligenceBiological MarkersBiological ModelsCardiacCessation of lifeCharacteristicsClinicalClinical DataClinical ResearchClinical TrialsColoradoComplexCoupledDataData SetData SourcesDevelopmentDiagnosisDiseaseElectronic Health RecordEventFramingham Heart StudyFunctional disorderFutureGoalsGuidelinesHealth systemHeart failureHospitalizationIndividualIndustryInterventionKnowledgeLeft Ventricular Ejection FractionLinear ModelsMachine LearningMedicalMeta-AnalysisMetadataMethodsModelingObservational StudyOutcomePatient SelectionPatientsPatterns of CarePerformancePhenotypePhysiologicalPopulationPredictive ValuePrognosisRegression AnalysisResourcesRisk FactorsSurvival AnalysisTestingUniversitiesValidationclinical applicationclinical data warehouseclinical practiceclinical riskcohortcomorbiditydata harmonizationdata resourcedesigndiverse dataepidemiology studyhealth disparityimprovedindividual patientinsightmachine learning methodmachine learning modelnovelpatient populationpoint of carepredict clinical outcomeprediction algorithmpredictive modelingrandomized, clinical trialssecondary analysisstudy populationsupervised learningsurvival predictiontargeted treatmenttreatment responseunsupervised learningvirtual
项目摘要
PROJECT ABSTRACT
The primary goal of this project is to leverage large, harmonized data resources comprised of a broad range
of patients with heart failure (HF) by using machine learning (ML) to develop and test complex models to predict
clinical outcomes and identify HF phenotypes that may be clinically important based on pathophysiology,
prognosis, and treatment response. We will accomplish this through secondary analysis of 25 clinical trials, 6
large epidemiologic studies, and electronic health record data totaling ~ 130,000 patients with HF. Of these >
40,270 are derived from 21 BioLINCC datasets, 43,536 from industry-sponsored studies and 45,763 from the
EHR. By utilizing a variety of studies with respect to population, design, timeframe, and data source, we envisage
that our phenotypes will be a) more reflective of the spectrum of patients encountered in real world clinical
practice and b) able to be identified more consistently with routinely collected clinical data. Improved
characterization of outcomes according to HF phenotype may in turn facilitate personalization of HF
management both in terms of therapies and treatment goals. We hypothesize that predictive and phenotyping
models generated using these resources will outperform existing models across a range of data sources and
clinical populations. The primary overlapping Aims of this proposal are:
1. Use data from 74,308 patients in 25 completed clinical trials to characterize survival and
treatment response according to simple characteristics, predictive models, and complex
phenotypes. We apply both supervised and unsupervised ML methods to this dataset in one of the
largest individual patient data meta-analyses of HF clinical trial data to date. We will then compare the
predictive value of these models to established models derived using conventional regression and
survival analysis.
2. Validate models from Aim 1, explore novel phenotypes, and describe associated clinical
characteristics prior to HF diagnosis in 9,734 patients with incident HF from observational cohorts.
Using data from 6 large studies such as the Framingham Heart Study, we will validate established models
and models from Aim 1. We will also identify major phenotypes not well represented in clinical trials and
attempt to identify clinical risk factors that precede development of specific HF phenotypes.
3. Validate phenotype characteristics, associations, and outcomes in 45,763 patients with HF using
retrospective electronic health record (EHR) data from the University of Colorado's clinical data
warehouse. We will test all predictive and patient phenotype models derived in Aims 1 and 2 using these
harmonized real-world data and again identify phenotypes not well-represented in other the datasets.
Because of known health disparities in clinical practice, we will describe care patterns according to patient
phenotype that may impact outcomes.
项目摘要
该项目的主要目标是利用由广泛的
通过使用机器学习(ML)开发和测试复杂模型来预测心力衰竭(HF)患者
临床结果并基于病理生理学鉴定可能具有临床重要性的HF表型,
预后和治疗反应。我们将通过对25项临床试验的二次分析来实现这一目标,
大型流行病学研究和总计约130,000例HF患者的电子健康记录数据。其中>
其中40,270份来自21个BioLINCC数据集,43,536份来自行业赞助的研究,45,763份来自
电子病历通过利用关于人口,设计,时间框架和数据来源的各种研究,我们设想
我们的表型将a)更能反映真实的临床中遇到的患者谱,
实践和B)能够与常规收集的临床数据更一致地识别。改进
根据HF表型的结果表征反过来可以促进HF的个性化
在治疗方法和治疗目标方面的管理。我们假设预测和表型分析
使用这些资源生成的模型将在一系列数据源中优于现有模型,
临床人群。这项建议的主要目标是:
1.使用25项已完成临床试验中74,308例患者的数据来描述生存率,
根据简单特征、预测模型和复杂
表型我们将监督和无监督ML方法应用于其中一个数据集,
迄今为止最大的HF临床试验数据的个体患者数据荟萃分析。然后我们将比较
这些模型对使用常规回归得出的已建立模型的预测值,
生存分析
2.研究目标1中的模型,探索新的表型,并描述相关的临床
在来自观察性队列的9,734例发生HF的患者中进行HF诊断前的特征分析。
我们将使用来自6项大型研究的数据,如心脏病研究,验证已建立的模型
和Aim 1的模型。我们还将确定在临床试验中没有很好代表的主要表型,
试图确定发生特定HF表型之前的临床风险因素。
3. 45,763例HF患者的表型特征、相关性和结局,
来自科罗拉多大学临床数据的回顾性电子健康记录(EHR)数据
仓库我们将使用这些方法测试目标1和目标2中得出的所有预测和患者表型模型。
协调现实世界的数据,并再次识别在其他数据集中没有得到充分代表的表型。
由于临床实践中已知的健康差异,我们将根据患者描述护理模式
可能影响结果的表型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Peter Kao其他文献
CHARACTERISTICS OF 2067 PATIENTS HOSPITALIZED WITH PERIPARTUM CARDIOMYOPATHY
- DOI:
10.1016/s0735-1097(12)61573-3 - 发表时间:
2012-03-27 - 期刊:
- 影响因子:
- 作者:
David Peter Kao;Eileen Hsich;Joann Lindenfeld - 通讯作者:
Joann Lindenfeld
HIGH-DIMENSIONAL CLINICAL PHENOTYPE ANALYSIS PREDICTS MORTALITY AND RESPONSE TO BETA-BLOCKER THERAPY IN NONISCHEMIC HEART FAILURE
- DOI:
10.1016/s0735-1097(11)61266-7 - 发表时间:
2011-04-05 - 期刊:
- 影响因子:
- 作者:
David Peter Kao;Brandie D. Wagner;Alastair D. Robertson;John M. Kittelson;Michael R. Bristow;Brian D. Lowes - 通讯作者:
Brian D. Lowes
LIFELONG BACHELOR STATUS IS ASSOCIATED WITH INCREASED MORTALITY IN MEN WITH HEART FAILURE—A SECONDARY ANALYSIS OF THE MULTI-ETHNIC STUDY OF ATHEROSCLEROSIS
- DOI:
10.1016/s0735-1097(23)00751-9 - 发表时间:
2023-03-07 - 期刊:
- 影响因子:
- 作者:
Katarina Leyba;David Peter Kao - 通讯作者:
David Peter Kao
CLINICAL AND FUNCTIONAL DIFFERENCES IN HEART FAILURE PHENOTYPES ACROSS THE EJECTION FRACTION SPECTRUM PROVIDES PROGNOSTIC INFORMATION
- DOI:
10.1016/s0735-1097(23)01033-1 - 发表时间:
2023-03-07 - 期刊:
- 影响因子:
- 作者:
Maeveen Riordan;David Peter Kao - 通讯作者:
David Peter Kao
SEX DIFFERENCES IN IN-HOSPITAL MORTALITY IN PATIENTS REQUIRING EXTRACORPOREAL MEMBRANE OXYGENATION
需要体外膜肺氧合的患者住院死亡率的性别差异
- DOI:
10.1016/s0735-1097(25)01725-5 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:22.300
- 作者:
Katherine Julian;David Peter Kao - 通讯作者:
David Peter Kao
David Peter Kao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10490338 - 财政年份:2021
- 资助金额:
$ 11.61万 - 项目类别:
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10353104 - 财政年份:2021
- 资助金额:
$ 11.61万 - 项目类别:
Investigating pollution dynamics of swimming pool waters by means of chemical and biological markers
利用化学和生物标记物研究游泳池水体的污染动态
- 批准号:
21K04320 - 财政年份:2021
- 资助金额:
$ 11.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10688286 - 财政年份:2021
- 资助金额:
$ 11.61万 - 项目类别:
Novel biological markers for immunotherapy and comprehensive genetic analysis in thymic carcinoma
用于胸腺癌免疫治疗和综合遗传分析的新型生物标志物
- 批准号:
20K17755 - 财政年份:2020
- 资助金额:
$ 11.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10578649 - 财政年份:2019
- 资助金额:
$ 11.61万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10295141 - 财政年份:2019
- 资助金额:
$ 11.61万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10041708 - 财政年份:2019
- 资助金额:
$ 11.61万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
9776149 - 财政年份:2019
- 资助金额:
$ 11.61万 - 项目类别:
Combining biological and non-biological markers to develop a model predictive of treatment response for individuals with depression
结合生物和非生物标志物来开发预测抑郁症患者治疗反应的模型
- 批准号:
2063934 - 财政年份:2018
- 资助金额:
$ 11.61万 - 项目类别:
Studentship