Nuclear FAK-mediated VSMC differentiation via epigenetic reprograming invascular diseases
通过表观遗传重编程血管疾病中核 FAK 介导的 VSMC 分化
基本信息
- 批准号:10584581
- 负责人:
- 金额:$ 47.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-16 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:Apolipoprotein EArterial Fatty StreakArteriesAtherosclerosisBiochemicalCD47 geneCardiovascular systemCell CycleCell Differentiation processCell NucleusCell ProliferationCellsComplexCyclin D1CytoplasmDNA MethylationDNA Modification MethylasesDataDeacetylaseDiseaseEpigenetic ProcessFailureFocal Adhesion Kinase 1Gene ExpressionGenesGeneticGenetic ModelsGenetic TranscriptionGrowth FactorHistonesHumanHyperlipidemiaInflammatoryInjuryIntegrinsInterventionIntervention StudiesInvestmentsMacrophageMediatingModelingMolecularMolecular BiologyMusNuclearNucleosomesPhenotypePlayProcessProductionProliferatingProtein Tyrosine KinaseRepressionRoleSamplingSignal TransductionSmooth Muscle MyocytesSpecimenStimulusTestingTherapeuticUbiquitinationVascular Smooth Musclecell dedifferentiationcell motilitychromatin remodelingepigenetic regulationhistone modificationinsightkinase inhibitormouse modelnoveloxidized lipidpharmacologicpreventpromoterresponsetooltransdifferentiationvascular injury
项目摘要
VSMCs dedifferentiate into a proliferative state upon vessel injury or transdifferentiate into macrophage-like
cells (MLCs) during atherosclerosis progression. VSMC phenotypic switching are driven by multiple
transcriptional and epigenetic changes that lead to increased proliferation with reduced contractile gene
expression and increased matrix production, which is detrimental to atherosclerotic lesions, direct
interventional studies that target this process have been lacking. Increased matrix and growth factors alter
integrin signaling and leads to aberrant focal adhesion kinase (FAK) activation, which may promote VSMC
phenotypic switching. We demonstrated that FAK is inactive and primarily localized in the nuclei of VSMCs of
healthy arteries. However, vessel injury promoted FAK activation and cytoplasmic relocalization, which
increased cyclin D1 transcription and cell cycling. While we found that inhibition of FAK activity in VSMCs
induced nuclear localization of FAK and increased contractile gene transcription, the underlying mechanism by
which FAK regulates the contractile genes is not known. We have identified DNA methyltransferase 3A
(DNMT3A) and the nucleosome remodeling and deacetylase (NuRD) complex, two key epigenetic repression
machineries, as nuclear FAK-interacting partners in VSMCs. FAK inhibition decreased DNMT3A and NuRD
component expression, which was associated with decreased DNA methylation and increased active histone
marks within contractile gene promoters. Using genetic FAK cytoplasmic (Cyto) restricted VSMCs, we found
that nuclear FAK is required for reducing DNMT3A/NuRD and for increasing contractile gene expression.
Additionally, ApoE-/-;FAK-Cyto mice showed increased atherosclerosis compared to WT mice, suggesting that
active cytoplasmic FAK exacerbates atherosclerosis. Further, FAK showed increased cytoplasmic localization
and activity within human atherosclerotic lesions compared to healthy specimens. Importantly, FAK inhibitor
reduced advanced atherosclerotic lesions in ApoE-/- mice, which was associated with reduced DNMT3A and
NuRD component expression with increased ACTA2+ cells in the fibrous cap. Our hypothesis is that FAK
catalytic inhibition forces FAK nuclear localization and promotes VSMC differentiation via reduced expression
of epigenetic regulators DNMT3A and NuRD complex. Aim 1 will elucidate the molecular mechanism of
nuclear FAK-mediated VSMC phenotypic switching via epigenetic modulation of DNA methylation, chromatin
remodeling, and histone modification. Aim 2 will investigate the role of DNMT3A and the NuRD complex in
VSMC dedifferentiation upon vascular injury using both DNMT3A and NuRD genetic models. Aim 3 will
evaluate the effect of FAK inhibition on blocking VSMC transdifferentiation and promoting plaque stability in
early and advanced atherosclerosis. This study will provide new insights into VSMC phenotype switching via
FAK-mediated epigenetic control through DNMT3A and NuRD complex stability. The therapeutic potential of
FAK inhibitors in alleviating intimal thickening in vascular injury and atherosclerosis will also be assessed.
VSMC在血管损伤或转变为巨噬细胞状后将其推导成增殖状态
动脉粥样硬化进展过程中的细胞(MLC)。 VSMC表型切换由多个驱动
转录和表观遗传变化导致收缩基因减少的增殖增加
表达并增加基质产生,这对动脉粥样硬化病变有害
针对此过程的介入研究缺乏。增加基质和生长因子改变了
整联蛋白信号传导并导致异常局灶性粘附激酶(FAK)激活,这可能促进VSMC
表型切换。我们证明了FAK是不活跃的,主要定位于VSMC的核
健康的动脉。然而,血管损伤促进了FAK激活和细胞质重新定位,这
Cyclin D1转录和细胞循环增加。虽然我们发现VSMC中FAK活性的抑制作用
诱导FAK的核定位和增加的收缩基因转录,这是基本机制
FAK调节收缩基因尚不清楚。我们已经确定了DNA甲基转移酶3A
(DNMT3A)和核小体重塑和脱乙酰基酶(NURD)复合物,两个关键的表观抑制作用
机器,作为VSMC中的核FAK相互作用伙伴。 FAK抑制减少了DNMT3A和NURD
成分表达,与DNA甲基化降低和活性组蛋白增加有关
收缩基因启动子中的标记。使用遗传FAK细胞质(CYTO)受限的VSMC,我们发现
减少DNMT3A/NURD并增加收缩基因表达所必需的核FAK。
另外,与WT小鼠相比,ApoE - / - ; Fak-Cyto小鼠显示动脉粥样硬化增加,这表明
主动细胞质FAK加剧了动脉粥样硬化。此外,FAK显示细胞质定位增加
与健康标本相比,人动脉粥样硬化病变中的活性。重要的是,FAK抑制剂
apoE - / - 小鼠中的晚期动脉粥样硬化病变减少,与DNMT3A降低有关
NURD成分表达在纤维帽中具有增加的ACTA2+细胞。我们的假设是Fak
催化抑制力FAK核定位并通过降低表达促进VSMC分化
表观遗传调节剂DNMT3A和Nurd Complex。 AIM 1将阐明
核FAK介导的VSMC表型通过DNA甲基化的表观遗传调节,染色质调节
重塑和组蛋白修饰。 AIM 2将调查DNMT3A和NURD综合体在
使用DNMT3A和NURD遗传模型对血管损伤进行VSMC去分化。目标3意志
评估FAK抑制对阻断VSMC跨分化和促进斑块稳定性的影响
早期和晚期动脉粥样硬化。这项研究将为通过VSMC表型切换提供新的见解
FAK介导的表观遗传学通过DNMT3A和NURD复合稳定性。治疗潜力
还将评估减轻血管损伤内膜增厚和动脉粥样硬化的FAK抑制剂。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steve Lim其他文献
Steve Lim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steve Lim', 18)}}的其他基金
Nuclear FAK-mediated VSMC differentiation via epigenetic reprograming invascular diseases
通过表观遗传重编程血管疾病中核 FAK 介导的 VSMC 分化
- 批准号:
10618482 - 财政年份:2022
- 资助金额:
$ 47.54万 - 项目类别:
FAK regulation of cholesterol influx and efflux in foam cells
FAK对泡沫细胞中胆固醇流入和流出的调节
- 批准号:
10729865 - 财政年份:2021
- 资助金额:
$ 47.54万 - 项目类别:
FAK regulation of cholesterol influx and efflux in foam cells
FAK 对泡沫细胞中胆固醇流入和流出的调节
- 批准号:
10640873 - 财政年份:2021
- 资助金额:
$ 47.54万 - 项目类别:
FAK regulation of cholesterol influx and efflux in foam cells
FAK 对泡沫细胞中胆固醇流入和流出的调节
- 批准号:
10278516 - 财政年份:2021
- 资助金额:
$ 47.54万 - 项目类别:
FAK regulation of cholesterol influx and efflux in foam cells
FAK 对泡沫细胞中胆固醇流入和流出的调节
- 批准号:
10427440 - 财政年份:2021
- 资助金额:
$ 47.54万 - 项目类别:
相似海外基金
Regulation of Vascular Calcification by Adventitial Endothelial Cells
外膜内皮细胞对血管钙化的调节
- 批准号:
10642619 - 财政年份:2023
- 资助金额:
$ 47.54万 - 项目类别:
Role of IL-6 trans signaling in atherosclerosis development and late-stage pathogenesis
IL-6反式信号传导在动脉粥样硬化发展和晚期发病机制中的作用
- 批准号:
10652788 - 财政年份:2023
- 资助金额:
$ 47.54万 - 项目类别:
Novel Mechanisms Underlying the Development of Atherosclerosis
动脉粥样硬化发展的新机制
- 批准号:
10589484 - 财政年份:2023
- 资助金额:
$ 47.54万 - 项目类别:
Development of a novel site-and cell-selective mRNA therapeutic to treat atherosclerosis
开发一种新的位点和细胞选择性 mRNA 治疗剂来治疗动脉粥样硬化
- 批准号:
10679992 - 财政年份:2023
- 资助金额:
$ 47.54万 - 项目类别:
NKA/CD36 signaling in adipocytes promotes oxidative stress and drives chronic inflammation in atherosclerosis
脂肪细胞中的 NKA/CD36 信号传导促进氧化应激并驱动动脉粥样硬化的慢性炎症
- 批准号:
10655793 - 财政年份:2023
- 资助金额:
$ 47.54万 - 项目类别: