Synthetic mRNA Control Set for Nanopore-Based Pseudouridine Modification Profiling in Human Transcriptomes
用于人类转录组中基于纳米孔的假尿苷修饰分析的合成 mRNA 对照集
基本信息
- 批准号:10582330
- 负责人:
- 金额:$ 84.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsBar CodesBase PairingCell LineCellsChemicalsConsensusDataData SetDerivation procedureDetectionDevelopmentDiseaseEnzymesFoundationsGene ExpressionGenerationsGoldHumanHuman Cell LineIndividualIsomerismLabelLigationLocationMachine LearningMammalian CellMapsMass Spectrum AnalysisMeasuresMediatingMessenger RNAMethodsModificationMolecularMonitorOutcomePhenotypePseudouridineRNARNA-Binding ProteinsResistanceRibonucleasesRoleRunningSamplingSignal TransductionSiteStructureThermodynamicsTimeTrainingTranscriptTranslationsUridineWorkcell typecomputational pipelinescomputerized toolsdevelopmental diseasehigh standardimmunogenicityin vivonanoporenext generation sequencingnovelrecruitsingle moleculesuccesstooltranscriptometranscriptome sequencing
项目摘要
PROJECT SUMMARY/ABSTRACT
Mammalian cells expend large amounts of energy into generating enzyme-mediated RNA chemical
modifications that can change the base-pairing, RNA structure, or recruitment of RNA-binding proteins, among
other elusive roles. Pseudouridine (ψ)-modified mRNAs are more thermodynamically stable, more resistant to
RNAse-mediated degradation, and have the potential to modulate immunogenicity and enhance translation in
vivo. However, ψ detection is extremely challenging: ψ modifications do not affect Watson-Crick base pairing
and are indistinguishable from uridine when using hybridization-based methods. Further, since ψ is an isomer
of uridine, detection using mass spectrometry requires non-quantitative chemical derivatization methods. While
recent studies have shown that RNA modifications can be detected through direct RNA nanopore sequencing
by monitoring basecalling errors, we have recently shown that the accuracy and fidelity of this approach is
relatively low and sequence dependent. Our team has recently used a ligation approach to produce synthetic
mRNA controls that contain single ψ sites within relevant transcripts mammalian cells. Using these synthetic
controls we performed nanopore-based RNA sequencing and developed computational tools that increase the
accuracy of ψ-calling to 90+%, depending on the specific sequence. We are basing our work on our recent
finding that achieving ψ quantification requires sequence-specific training using unique signal parameters. The
initial success of our team has laid the foundation to 1) generate an expanded set of barcoded synthetic RNA
constructs that contain single ψ sites, 2) obtain a rigorous set of quadruplicate nanopore runs with ~50,000
single-molecule reads per construct, 3) develop computational tools to allow highly accurate sequence-specific
ψ-calling. We will develop a gold-standard set of synthetic mRNA transcripts as a training molecular set for
quantitative ψ profiling in direct RNA nanopore sequencing of human transcriptomes. The molecular set will
allow quantitative profiling of hundreds of putative ψ sites across mammalian samples.
This proposal will serve an unmet need by addressing a critical bottleneck: the lack of available modified RNA
modification gold standards, i.e., RNA molecules that contain a site-specific and structure-specific modification.
In this collaborative project we will develop a complete pipeline for synthesis of gold standard molecules; use
these molecules to measure the nanopore signals that ψ modifications produce; develop a machine-learning
tool to accurately quantify these modifications; profile site-specific ψ modifications in various cell lines to obtain
ψ-maps that can be used to assess relationships of ψ modifications with phenotypes.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sara Hakim Rouhanifard其他文献
Sara Hakim Rouhanifard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 84.83万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 84.83万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 84.83万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 84.83万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 84.83万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 84.83万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 84.83万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 84.83万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 84.83万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 84.83万 - 项目类别:
Research Grant