Synthetic mRNA Control Set for Nanopore-Based Pseudouridine Modification Profiling in Human Transcriptomes
用于人类转录组中基于纳米孔的假尿苷修饰分析的合成 mRNA 对照集
基本信息
- 批准号:10582330
- 负责人:
- 金额:$ 84.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsBar CodesBase PairingCell LineCellsChemicalsConsensusDataData SetDerivation procedureDetectionDevelopmentDiseaseEnzymesFoundationsGene ExpressionGenerationsGoldHumanHuman Cell LineIndividualIsomerismLabelLigationLocationMachine LearningMammalian CellMapsMass Spectrum AnalysisMeasuresMediatingMessenger RNAMethodsModificationMolecularMonitorOutcomePhenotypePseudouridineRNARNA-Binding ProteinsResistanceRibonucleasesRoleRunningSamplingSignal TransductionSiteStructureThermodynamicsTimeTrainingTranscriptTranslationsUridineWorkcell typecomputational pipelinescomputerized toolsdevelopmental diseasehigh standardimmunogenicityin vivonanoporenext generation sequencingnovelrecruitsingle moleculesuccesstooltranscriptometranscriptome sequencing
项目摘要
PROJECT SUMMARY/ABSTRACT
Mammalian cells expend large amounts of energy into generating enzyme-mediated RNA chemical
modifications that can change the base-pairing, RNA structure, or recruitment of RNA-binding proteins, among
other elusive roles. Pseudouridine (ψ)-modified mRNAs are more thermodynamically stable, more resistant to
RNAse-mediated degradation, and have the potential to modulate immunogenicity and enhance translation in
vivo. However, ψ detection is extremely challenging: ψ modifications do not affect Watson-Crick base pairing
and are indistinguishable from uridine when using hybridization-based methods. Further, since ψ is an isomer
of uridine, detection using mass spectrometry requires non-quantitative chemical derivatization methods. While
recent studies have shown that RNA modifications can be detected through direct RNA nanopore sequencing
by monitoring basecalling errors, we have recently shown that the accuracy and fidelity of this approach is
relatively low and sequence dependent. Our team has recently used a ligation approach to produce synthetic
mRNA controls that contain single ψ sites within relevant transcripts mammalian cells. Using these synthetic
controls we performed nanopore-based RNA sequencing and developed computational tools that increase the
accuracy of ψ-calling to 90+%, depending on the specific sequence. We are basing our work on our recent
finding that achieving ψ quantification requires sequence-specific training using unique signal parameters. The
initial success of our team has laid the foundation to 1) generate an expanded set of barcoded synthetic RNA
constructs that contain single ψ sites, 2) obtain a rigorous set of quadruplicate nanopore runs with ~50,000
single-molecule reads per construct, 3) develop computational tools to allow highly accurate sequence-specific
ψ-calling. We will develop a gold-standard set of synthetic mRNA transcripts as a training molecular set for
quantitative ψ profiling in direct RNA nanopore sequencing of human transcriptomes. The molecular set will
allow quantitative profiling of hundreds of putative ψ sites across mammalian samples.
This proposal will serve an unmet need by addressing a critical bottleneck: the lack of available modified RNA
modification gold standards, i.e., RNA molecules that contain a site-specific and structure-specific modification.
In this collaborative project we will develop a complete pipeline for synthesis of gold standard molecules; use
these molecules to measure the nanopore signals that ψ modifications produce; develop a machine-learning
tool to accurately quantify these modifications; profile site-specific ψ modifications in various cell lines to obtain
ψ-maps that can be used to assess relationships of ψ modifications with phenotypes.
项目摘要/摘要
哺乳动物细胞耗费大量能量来产生酶介导的RNA化学物质
可以改变碱基配对、RNA结构或RNA结合蛋白招募的修饰,包括
其他难以捉摸的角色。假尿苷(ψ)修饰的mRNA在热力学上更稳定,对
核糖核酸酶介导的降解,并有可能调节免疫原性和增强翻译
活着。然而,ψ检测极具挑战性:ψ修饰不会影响沃森-克里克碱基配对
并且在使用基于杂交的方法时与尿苷难以区分。此外,由于ψ是一种异构体
对于尿苷,使用质谱仪进行检测需要非定量的化学衍生化方法。而当
最近的研究表明,通过直接的RNA纳米孔测序可以检测到RNA的修饰
通过监测基线误差,我们最近已经表明,这种方法的准确性和保真度是
相对较低且依赖于序列。我们的团队最近使用了一种连接方法来生产合成的
在相关转录本哺乳动物细胞中包含单个ψ位点的mR NA控制。使用这些合成的
我们进行了基于纳米孔的RNA测序,并开发了计算工具来增加
根据特定的顺序,ψ呼叫的准确率达到90+%。我们的工作是基于我们最近的
发现实现ψ量化需要使用唯一信号参数的特定序列训练。这个
我们团队的初步成功为1)生产扩展的条形码合成RNA奠定了基础
包含单个ψ位点的构建体,2)获得一组严格的四重纳米孔运行,约为50,000
每个构建体的单分子读数,3)开发计算工具以实现高度精确的序列特异性
ψ-呼叫。我们将开发一套黄金标准的合成信使核糖核酸转录本作为训练分子集
人类转录本直接ψ纳米孔测序中的定量rna图谱分析。分子集将会
允许对哺乳动物样本中数以百计的假定ψ位点进行定量分析。
这项提议将通过解决一个关键的瓶颈来满足一个未得到满足的需求:缺乏可用的修饰RNA
修饰黄金标准,即包含特定位点修饰和特定结构修饰的RNA分子。
在这个合作项目中,我们将开发一条合成黄金标准分子的完整流水线;使用
这些分子测量ψ修饰产生的纳米孔信号;开发一种机器学习
准确量化这些修改的工具;分析各种细胞系中特定部位的ψ修改,以获得
ψ-可用于评估ψ修饰与表型的关系的图谱。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sara Hakim Rouhanifard其他文献
Sara Hakim Rouhanifard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 84.83万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 84.83万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 84.83万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 84.83万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 84.83万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 84.83万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 84.83万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 84.83万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 84.83万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 84.83万 - 项目类别:
Research Grant