Smart Cuff: Multi-Parameter Hemodynamic Monitoring via a Single Convenient Device

智能袖带:通过单个便捷设备进行多参数血流动力学监测

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Multi-parameter hemodynamic monitoring is needed to manage surgical and intensive care patients. Monitoring blood pressure (BP), cardiac output (CO), and left ventricular ejection fraction (EF), in particular, permits detection of frequent hypotension and hemodynamic instability, diagnosis of the cause for selecting appropriate therapy, and titration of interventions (e.g., goal-directed therapy). However, measurement of these three hemodynamic variables currently requires multiple devices that are invasive, manual, or specialized. While the oscillometric arm cuff device is non-invasive, automated, and standard, it only estimates BP from the measured cuff pressure waveform via a population average algorithm that does not maintain accuracy over the clinical range. The overall goal of this project is to extend the ubiquitous arm cuff device for accurate and convenient multi- parameter hemodynamic monitoring via smart algorithms. The specific aims are: (1) to build an arm cuff device for recording cuff pressure waveforms; (2) to simultaneously acquire patient data with this and reference devices for algorithm training; (3) to develop and incorporate algorithms for accurately computing BP, CO, and EF from the cuff pressure waveform based on the training data; and (4) to validate the real-time Smart Cuff against reliable reference measurements in patients. The device will be developed to control the cuff pressure and incorporate custom algorithms. The cuff pressure waveform via the device and reference BP, CO, and EF via arterial and pulmonary artery catheters and echocardiography will be recorded before and after clinical interventions in many surgical and intensive care patients. These training data will be analyzed to refine or adapt previous physiologic algorithms and to investigate potentially superior machine learning algorithms for best estimation of the three hemodynamic variables. The final algorithms will be implemented for a real-time device, and the integrated system will be tested against the same reference measurements during clinical interventions but from new patients. Achievement of the specific aims will be followed by a translational project to bring the Smart Cuff to patient care and a research project to extend the device capabilities including addition of automated clinical decision support. Ultimately, these efforts may help in improving patient outcomes and reducing healthcare costs in the near-term.
项目总结/摘要 需要多参数血流动力学监测来管理手术和重症监护患者。 监测血压(BP)、心输出量(CO)和左心室射血分数(EF), 特别是,允许检测频繁的低血压和血流动力学不稳定, 选择适当治疗的原因,以及干预措施的滴定(例如,目标导向疗法)。 然而,这三个血流动力学变量的测量目前需要多个设备 是侵入性的,手动的,或者专门的。虽然测量臂袖带装置是非侵入性的, 自动化和标准化,它只通过测量袖带压力波形来估计BP。 群体平均算法不能在临床范围内保持准确度。整体 本项目的目标是扩展无处不在的手臂袖口设备,以实现准确和方便的多功能, 通过智能算法进行血流动力学参数监测。具体目标是:(1)建立一个手臂 用于记录袖带压力波形的袖带装置;(2)与该袖带装置同时采集患者数据, 和算法训练的参考设备;(3)开发和整合算法, 基于所述训练数据从所述袖带压力波形计算BP、CO和EF;以及(4) 根据患者的可靠参考测量值验证实时智能袖带。该设备将 开发用于控制袖带压力并结合自定义算法。袖带压力 通过器械测量波形,通过动脉和肺动脉导管测量参考BP、CO和EF 超声心动图将在许多外科手术和 重症监护病人这些训练数据将被分析,以改进或适应先前的生理数据。 算法,并研究潜在的上级机器学习算法,以获得 三个血液动力学变量。最终的算法将在实时设备上实现, 在临床试验期间,将根据相同的参考测量结果对集成系统进行测试 但对于新患者。具体目标实现后, 将智能袖带引入患者护理的转化项目和将 设备功能,包括增加自动临床决策支持。最终,这些努力 可能有助于改善患者的治疗效果,并在短期内降低医疗成本。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

RAMAKRISHNA MUKKAMALA其他文献

RAMAKRISHNA MUKKAMALA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('RAMAKRISHNA MUKKAMALA', 18)}}的其他基金

A Smartphone-Based Device for Cuff-Less and Calibration-Free Blood Pressure Monitoring
基于智能手机的无袖带、免校准血压监测设备
  • 批准号:
    9927703
  • 财政年份:
    2019
  • 资助金额:
    $ 71.7万
  • 项目类别:
A Smartphone-Based Device for Cuff-Less and Calibration-Free Blood Pressure Monitoring
基于智能手机的无袖带、免校准血压监测设备
  • 批准号:
    10300143
  • 财政年份:
    2019
  • 资助金额:
    $ 71.7万
  • 项目类别:
Unobtrusive and Affordable Blood Pressure Monitoring Via Pulse Transit Time
通过脉搏传输时间进行不引人注目且经济实惠的血压监测
  • 批准号:
    8745161
  • 财政年份:
    2014
  • 资助金额:
    $ 71.7万
  • 项目类别:
Unobtrusive and Affordable Blood Pressure Monitoring Via Pulse Transit Time
通过脉搏传输时间进行不引人注目且经济实惠的血压监测
  • 批准号:
    9326295
  • 财政年份:
    2014
  • 资助金额:
    $ 71.7万
  • 项目类别:
Unobtrusive and Affordable Blood Pressure Monitoring Via Pulse Transit Time
通过脉搏传输时间进行不引人注目且经济实惠的血压监测
  • 批准号:
    8898794
  • 财政年份:
    2014
  • 资助金额:
    $ 71.7万
  • 项目类别:
Non-Invasive Monitoring of Central Blood Pressure in Humans
人体中心血压的无创监测
  • 批准号:
    8227726
  • 财政年份:
    2012
  • 资助金额:
    $ 71.7万
  • 项目类别:
Non-Invasive Monitoring of Central Blood Pressure in Humans
人体中心血压的无创监测
  • 批准号:
    8454415
  • 财政年份:
    2012
  • 资助金额:
    $ 71.7万
  • 项目类别:
Continuous Cardiac Output & Filling Pressure Monitoring
连续心输出量
  • 批准号:
    7229994
  • 财政年份:
    2006
  • 资助金额:
    $ 71.7万
  • 项目类别:
Continuous Cardiac Output & Filling Pressure Monitoring
连续心输出量
  • 批准号:
    7037157
  • 财政年份:
    2006
  • 资助金额:
    $ 71.7万
  • 项目类别:
Noninvasive Quantification of the Resistance Baroreflex
阻力压力反射的无创量化
  • 批准号:
    6966598
  • 财政年份:
    2005
  • 资助金额:
    $ 71.7万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 71.7万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 71.7万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 71.7万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 71.7万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 71.7万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 71.7万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 71.7万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 71.7万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 71.7万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 71.7万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了