Resource competition drives natural and rebound dynamics of snails and schistosomes
资源竞争驱动钉螺和血吸虫的自然和反弹动态
基本信息
- 批准号:10582537
- 负责人:
- 金额:$ 34.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-16 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAgricultureBehavior TherapyBenignBindingBiologicalChemicalsCommunicable DiseasesDiseaseEcosystemExposure toFoodFresh WaterGoalsHabitatsHealthHumanIndividualInfectionLinkMeasuresMetabolicMethodsModelingModernizationMorbidity - disease rateParasitesPersonsPharmaceutical PreparationsPhysiologicalPlantsPlatyhelminthsPoisonPopulationProductionProductivityProxyRelaxationReproductionResearchResourcesRiskSchistosomaSchistosomiasisSeasonsShapesSiteSkinSnailsSourceStatistical ModelsTestingWaterWorkZoonosescontrol trialdensitydesigndisability-adjusted life yearsexposed human populationfood resourceglobal healthimprovedinfection riskinterestlaboratory experimentmathematical modelnovelprogramsreproductivetheoriestransmission processuptakevector-borne
项目摘要
RESOURCE COMPETITION DRIVES NATURAL AND REBOUND DYNAMICS OF SNAILS
AND SCHISTOSOMES
Project summary
More than 250 million people are infected with schistosomes, flatworms in the genus
Schistosoma, and 20 million humans suffer from severe morbidity due to schistosomiasis.
Humans become infected after exposure to larval parasites (cercariae) that are produced by
infected snails in freshwater habitats. Therefore, the production of cercariae by snail populations
represents an important component of the human risk of exposure, infection, and disease.
Schistosomiasis control incorporates many programs, including drug administration,
behavioral intervention and snail control. Snail control programs reduce snail density by
applying toxic chemical molluscicides or lethal predators. However, snails themselves do not
directly infect humans. Instead, snails release free living cercariae that directly cause human
infections following skin contact. This mismatch between the target of control (snails) and the
proximate cause of human infections (cercariae) complicates schistosome control because the
production of cercariae per snail is sensitive to ecological conditions, such as snail density.
The vast majority of models and control trials examining the natural dynamics and
control of schistosomes assume that snails are all equally infectious, leading to the assumption
that snail density directly correlates with cercariae density, and therefore potential for human
exposure. However, infected snails can produce >50-fold more cercariae when food is
abundant, competitors are scarce, and physical conditions are otherwise benign. Thus, counter
to conventional wisdom, cercarial densities, and human exposure potential, could be greatest
when the density of snails is lower and growing. Therefore, studying the dynamic link between
snail and cercarial density is critical to designing optimal snail control strategies, because these
dynamics determine the timing and magnitude of human risk.
This research will combine field and laboratory experiments to test novel hypotheses for
the dynamics of cercariae in natural settings that arise from theory we developed to explicitly
incorporate energy uptake and use by snails and schistosomes in dynamic scenarios.
Specifically, we will test predictions that: (1) there are brief, intense peaks of cercarial density
early in the season, when individual snails are large and highly reproductive, (2) the presence of
other food sources, such as decaying plants can sustain cercarial production over longer
periods, and (3) reducing, but not eliminating, snails from water bodies could backfire, causing
little reduction or even an increase in cercariae, by relaxing competition for food. Ultimately, this
work can improve the prediction and control of a parasite causing major global health burden.
资源竞争驱动蜗牛的自然繁殖和反弹
和血吸虫
项目摘要
超过2.5亿人感染了扁虫,扁虫属
2000万人因血吸虫病而严重发病。
人类在接触到由寄生虫产生的幼虫寄生虫(尾蚴)后受到感染,
淡水栖息地的感染蜗牛。因此,由蜗牛种群产生的尾蚴
是人类暴露、感染和疾病风险的重要组成部分。
血吸虫病控制包括许多方案,包括药物管理,
行为干预和灭螺。蜗牛控制计划通过以下方式降低蜗牛密度:
使用有毒的化学杀软体动物剂或致命的捕食者。然而,蜗牛本身并不
直接感染人类。相反,蜗牛释放自由生活的尾蚴,
皮肤接触后感染。这种控制目标(蜗牛)和
人类感染的近因(尾蚴)使棘手的控制复杂化,因为
每只蜗牛的尾蚴产量对生态条件如蜗牛密度很敏感。
绝大多数的模型和控制试验检查自然动态和
对蜗牛的控制假设所有蜗牛都具有相同的传染性,导致假设
蜗牛密度与尾蚴密度直接相关,因此可能对人类
exposure.然而,受感染的蜗牛可以产生超过50倍的尾蚴时,食物是
资源丰富,竞争者稀少,自然条件也很好。因此,
根据传统观念,尾蚴密度和人类暴露的可能性可能是最大的,
当蜗牛的密度较低并在增长时。因此,研究
蜗牛和尾蚴密度对设计最佳蜗牛控制策略至关重要,因为这些
动态决定了人类风险的时间和程度。
这项研究将结合联合收割机现场和实验室实验,以测试新的假设,
尾蚴在自然环境中的动力学,这是我们发展的理论,
在动态情景中纳入蜗牛和拟钉螺的能量吸收和使用。
具体来说,我们将测试预测:(1)有短暂的,强烈的峰值尾蚴密度
在季节的早期,当个体蜗牛很大并且高度繁殖时,(2)存在
其他食物来源,如腐烂的植物,可以维持尾蚴生产更长的时间,
(3)减少但不消除水体中的蜗牛可能适得其反,
通过放松对食物的竞争,尾蚴的数量几乎没有减少,甚至有所增加。最终这
这项工作可以改善对造成重大全球健康负担的寄生虫的预测和控制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David James Civitello其他文献
David James Civitello的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David James Civitello', 18)}}的其他基金
Resource competition drives natural and rebound dynamics of snails and schistosomes
资源竞争驱动钉螺和血吸虫的自然和反弹动态
- 批准号:
10343763 - 财政年份:2020
- 资助金额:
$ 34.2万 - 项目类别:
相似海外基金
REU Site: Controlled Environment Agriculture (CEAfREU)
REU 站点:受控环境农业 (CEAfREU)
- 批准号:
2349765 - 财政年份:2024
- 资助金额:
$ 34.2万 - 项目类别:
Standard Grant
I-Corps: Intelligent Hydroponics Growing Platform for Sustainable Agriculture
I-Corps:可持续农业的智能水培种植平台
- 批准号:
2345854 - 财政年份:2024
- 资助金额:
$ 34.2万 - 项目类别:
Standard Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
- 批准号:
2330043 - 财政年份:2024
- 资助金额:
$ 34.2万 - 项目类别:
Cooperative Agreement
COUSIN: Crop Wild Relatives utilisation and conservation for sustainable agriculture
表弟:作物野生近缘种的利用和保护以实现可持续农业
- 批准号:
10090949 - 财政年份:2024
- 资助金额:
$ 34.2万 - 项目类别:
EU-Funded
NSF Engines: North Dakota Advanced Agriculture Technology Engine
NSF 发动机:北达科他州先进农业技术发动机
- 批准号:
2315315 - 财政年份:2024
- 资助金额:
$ 34.2万 - 项目类别:
Cooperative Agreement
In Search of Future Farmers: Comparative Research on Young People's Exit from Agriculture in Rural Indonesia, Japan and Nepal
寻找未来农民:印度尼西亚、日本和尼泊尔农村年轻人退出农业的比较研究
- 批准号:
23K22187 - 财政年份:2024
- 资助金额:
$ 34.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Novel Biofertiliser for Sustainable Agriculture: Tackling Phosphorus Crisis
用于可持续农业的新型生物肥料:解决磷危机
- 批准号:
IM240100158 - 财政年份:2024
- 资助金额:
$ 34.2万 - 项目类别:
Mid-Career Industry Fellowships
Rural Development and Community Resiliency Through Agriculture Heritage Tourism
通过农业遗产旅游促进农村发展和社区复原力
- 批准号:
23K21819 - 财政年份:2024
- 资助金额:
$ 34.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Arboricrop: next generation agriculture using real-time information from trees crops
Arboricrop:利用树木作物实时信息的下一代农业
- 批准号:
10087410 - 财政年份:2024
- 资助金额:
$ 34.2万 - 项目类别:
Collaborative R&D
Advancing Controlled Environment Agriculture (CEA) with Dynamic LED Lighting Systems and Artificial Intelligence
利用动态 LED 照明系统和人工智能推进受控环境农业 (CEA)
- 批准号:
BB/Z514330/1 - 财政年份:2024
- 资助金额:
$ 34.2万 - 项目类别:
Research Grant