Molecular Physiology of Mitochondrial Calcium Uniporter

线粒体钙单向转运蛋白的分子生理学

基本信息

  • 批准号:
    10586576
  • 负责人:
  • 金额:
    $ 33.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-06-15 至 2027-04-30
  • 项目状态:
    未结题

项目摘要

Project Summary The mitochondrial calcium uniporter complex (MCUcx) is a highly-selective, tetrameric Ca2+ channel that plays a primary role in transporting Ca2+ from the cytoplasm into the mitochondrial matrix. Although Ca2+ uptake by mitochondria plays a crucial role in stimulating ATP production, matrix Ca2+ overload can trigger opening of the mitochondrial permeability transition pore, leading to cell death. MCU dysfunction has been implicated in several pathological conditions such as heart failure, ischemia–reperfusion injury, neurodegeneration, cancer and skeletal muscle dystrophies. Recent biochemical and structural studies have shown that the MCUcx is a macromolecular complex composed of a pore-forming MCU subunit, an essential subunit EMRE, and EF-hand domain-containing MICU1–3 subunits. How each subunit of the MCU complex comes together and regulates mitochondrial Ca2+ entry has been the focus of many recent studies. Using direct mitochondrial patch-clamp methodology and an innovative heterologous expression system, we recently performed a comprehensive structure–function analysis of the MCUcx in the inner mitochondrial membrane. This expression system consists of gene knockout of each individual subunit of the MCUcx (more than 6 different knockout lines were generated by CRISPR/cas9) and is readily amenable to different patch-clamp configurations with a high success rate. Using this system and the patch-clamp technique, we propose to answer central questions in the field: 1) Where is the MCU gate, and how is this gate regulated by Ca2+ and MCU accessory subunits? and 2) How do the unique features in the MCU macromolecular structures (as revealed by recent structural studies) relate to MCU gating and function? Accomplishment of the aims of this proposal will provide better understanding of the mechanisms that regulate Ca2+ entry via the MCU and create an essential framework for the development of pharmacological interventions that target MCU gating for therapeutic purposes.
项目摘要 线粒体钙单向转运体复合物(MCUcx)是一种高度选择性的四聚体钙通道, 在将Ca 2+从细胞质转运到线粒体基质中的主要作用。虽然Ca2+的吸收, 线粒体在刺激ATP产生中起着至关重要的作用,基质Ca 2+超载可以触发线粒体的开放, 线粒体通透性转换孔,导致细胞死亡。微控制器功能障碍与 几种病理状况如心力衰竭、缺血-再灌注损伤、神经变性、癌症 和骨骼肌营养不良。最近的生物化学和结构研究表明,MCUcx是一种 由成孔MCU亚基、必需亚基EMRE和EF-手组成的大分子复合物 包含MICU1 - 3亚基的结构域。MCU复合体的每个子单元如何聚集在一起并调节 线粒体Ca~(2+)内流是近年来研究的热点。采用直接线粒体膜片钳技术 方法和创新的异源表达系统,我们最近进行了全面的 线粒体内膜中MCUcx的结构-功能分析。该表达系统 由MCUcx的每个单独亚基的基因敲除组成(在MCUcx中, 由CRISPR/cas9产生),并且易于适用于不同的膜片钳配置,具有高的生物学活性。 成功率利用这一系统和膜片钳技术,我们建议回答中心问题, 领域:1)MCU门在哪里,这个门是如何被Ca2+和MCU附属亚基调节的?和2) MCU大分子结构中的独特特征(如最近的结构研究所揭示的) 与MCU门控和功能有关?实现本提案的目标将提供更好的 了解通过MCU调节Ca2+进入的机制,并为以下操作创建一个基本框架: 开发针对MCU门控的药物干预措施以达到治疗目的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vivek Garg其他文献

Vivek Garg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Biochemical and Structural Mechanisms Controlling tRNA-Modifying Metalloenzymes
职业:控制 tRNA 修饰金属酶的生化和结构机制
  • 批准号:
    2339759
  • 财政年份:
    2024
  • 资助金额:
    $ 33.99万
  • 项目类别:
    Continuing Grant
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
  • 批准号:
    479334
  • 财政年份:
    2023
  • 资助金额:
    $ 33.99万
  • 项目类别:
    Operating Grants
Diurnal environmental adaptation via circadian transcriptional control based on a biochemical oscillator
基于生化振荡器的昼夜节律转录控制的昼夜环境适应
  • 批准号:
    23H02481
  • 财政年份:
    2023
  • 资助金额:
    $ 33.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Leveraging releasable aryl diazonium ions to probe biochemical systems
利用可释放的芳基重氮离子探测生化系统
  • 批准号:
    2320160
  • 财政年份:
    2023
  • 资助金额:
    $ 33.99万
  • 项目类别:
    Standard Grant
Biochemical Mechanisms for Sustained Humoral Immunity
持续体液免疫的生化机制
  • 批准号:
    10637251
  • 财政年份:
    2023
  • 资助金额:
    $ 33.99万
  • 项目类别:
Structural and biochemical investigations into the mechanism and evolution of soluble guanylate cyclase regulation
可溶性鸟苷酸环化酶调节机制和进化的结构和生化研究
  • 批准号:
    10604822
  • 财政年份:
    2023
  • 资助金额:
    $ 33.99万
  • 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
  • 批准号:
    10716621
  • 财政年份:
    2023
  • 资助金额:
    $ 33.99万
  • 项目类别:
Converting cytoskeletal forces into biochemical signals
将细胞骨架力转化为生化信号
  • 批准号:
    10655891
  • 财政年份:
    2023
  • 资助金额:
    $ 33.99万
  • 项目类别:
Chemical strategies to investigate biochemical crosstalk in human chromatin
研究人类染色质生化串扰的化学策略
  • 批准号:
    10621634
  • 财政年份:
    2023
  • 资助金额:
    $ 33.99万
  • 项目类别:
EAGER: Elastic Electronics for Sensing Gut Luminal and Serosal Biochemical Release
EAGER:用于感测肠腔和浆膜生化释放的弹性电子器件
  • 批准号:
    2334134
  • 财政年份:
    2023
  • 资助金额:
    $ 33.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了