Multi-institutional validation of a multi-modal machine learning algorithm to predict and reduce acute care during cancer therapy

对多模式机器学习算法进行多机构验证,以预测和减少癌症治疗期间的急性护理

基本信息

项目摘要

PROJECT ABSTRACT An estimated 650,000 patients with cancer receive systemic therapy or radiation therapy (RT) annually in the United States. Many of these patients undergoing outpatient cancer therapy will require acute care with an emergency department visit or hospital admission due to symptoms from treatment, disease, or comorbidities. This can impact cancer outcomes, patient treatment decisions, and costs to patients and the healthcare system. While there has been much enthusiasm for artificial intelligence and machine learning (ML) to improve healthcare delivery, high quality prospective data are lacking, especially across diverse clinical practice settings. We previously completed one of the first randomized controlled studies in healthcare ML, demonstrating that ML based on EHR data can accurately generate personalized predictions and guide supportive interventions to decrease acute care requirements and costs in patients undergoing RT and chemoradiotherapy (CRT) (NCT04277650). We have also developed a ML model for predicting hospitalizations based on prospective clinical trials of daily step counts collected in patients undergoing CRT. The research objective of this application is to leverage a geographically, racially, socioeconomically, and technically diverse network of healthcare settings and patients to assess and maximize how accurately and equitably these approaches generalize. Our team includes the University of California, San Francisco (UCSF), Duke University, Beth Israel Deaconess Medical Center, Essentia Health in Duluth, MN and Ashland, WI, Washington Hospital in Fremont, CA, Duke Regional Hospital in Durham, NC, and Duke Raleigh Hospital in Raleigh, NC. Specifically, we seek to: (1) prospectively evaluate the validity of an EHR-based acute care prediction ML algorithm across our network and establish a framework for equity, generalizability, and portability and (2) validate our existing patient-generated health data (PGHD; step count) models that predict hospitalization during CRT at a second institution and integrate with our EHR-based ML algorithm to enhance prediction of acute care needs. We hypothesize that our approaches will be accurate across institutions though require adjustments for both generalizability and fairness, and that EHR- and PGHD-based approaches will offer complementary predictive performance. The long-term goal is to develop informatics-based tools that can be broadly and equitably deployed to improve the delivery of cancer care and subsequent treatment outcomes. This research will generate data regarding the generalizability and fairness of EHR- and PGHD-based approaches and a platform for a future multi-institutional randomized controlled trial.
项目摘要 估计每年有650,000名癌症患者接受全身治疗或放射治疗(RT) 美国。这些患者中有许多接受门诊癌症治疗将需要急性护理 由于治疗,疾病或合并症的症状,急诊室就诊或住院。 这可能会影响癌症的结果,患者治疗决策以及对患者和医疗保健的成本 系统。尽管人工智能和机器学习(ML)有很多热情,以改善 缺乏医疗保健服务,高质量的前瞻性数据,尤其是在各种临床实践中 设置。 我们以前完成了医疗保健ML中最早的随机对照研究之一,表明 基于EHR数据的ML可以准确地产生个性化的预测,并指导支持性干预措施 减少接受RT和化学放疗(CRT)患者的急性护理要求和成本 (NCT04277650)。我们还开发了一种ML模型,用于预测基于潜在的住院 接受CRT患者收集的每日步骤计数的临床试验。研究目标 应用是利用地理,种族,社会经济和技术多样化的网络的应用 医疗保健环境和患者,以评估和最大化这些方法的准确和公平程度 概括。我们的团队包括加利福尼亚大学旧金山大学(UCSF),杜克大学,贝丝 明尼苏达州德卢斯市的Essentia Health的执事医疗中心和威斯康星州的Ashland,华盛顿州弗里蒙特的华盛顿医院 CA,北卡罗来纳州达勒姆市的杜克大学地区医院和北卡罗来纳州罗利的杜克·罗利医院。具体来说,我们寻求 至:(1)前瞻性评估基于EHR的急性护理预测ML算法的有效性 网络并建立一个公平性,可推广性和可移植性的框架,以及(2)验证我们现有的 患者生成的健康数据(PGHD;步骤计数)模型,这些模型可预测CRT期间一秒钟的住院 机构并与基于EHR的ML算法集成,以增强急性护理需求的预测。我们 假设我们的方法在整个机构中都将是准确的 概括性和公平性,基于EHR和PGHD的方法将提供互补的预测 表现。 长期目标是开发基于信息学的工具,这些工具可以广泛,公平地部署到 改善癌症护理的分娩和随后的治疗结果。这项研究将生成数据 关于基于EHR和PGHD的方法的普遍性和公平性以及未来的平台 多机构的随机对照试验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Julian Clint Hong其他文献

Julian Clint Hong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A comparative evaluation of overdose prevention programs in New York City and Rhode Island
纽约市和罗德岛州药物过量预防计划的比较评估
  • 批准号:
    10629749
  • 财政年份:
    2023
  • 资助金额:
    $ 38.91万
  • 项目类别:
HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)
倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)
  • 批准号:
    10723292
  • 财政年份:
    2023
  • 资助金额:
    $ 38.91万
  • 项目类别:
Feasibility of a care team-focused action plan to improve quality of care for children and adolescents with inflammatory bowel disease
以护理团队为重点的行动计划的可行性,以提高炎症性肠病儿童和青少年的护理质量
  • 批准号:
    10724900
  • 财政年份:
    2023
  • 资助金额:
    $ 38.91万
  • 项目类别:
Development of a digital therapeutic targeting anxiety sensitivity to reduce PTSD-SUD in women presenting for emergency care after sexual assault.
开发一种针对焦虑敏感性的数字疗法,以减少性侵犯后寻求紧急护理的女性的 PTSD-SUD。
  • 批准号:
    10449766
  • 财政年份:
    2023
  • 资助金额:
    $ 38.91万
  • 项目类别:
Investigating Disparities in End-of-Life Care in Undocumented Hispanic Immigrants
调查无证西班牙裔移民临终关怀方面的差异
  • 批准号:
    10593462
  • 财政年份:
    2023
  • 资助金额:
    $ 38.91万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了