Derivation and Validation of the Pediatric Community-Acquired Pneumonia Severity (PedCAPS) Score
儿科社区获得性肺炎严重程度 (PedCAPS) 评分的推导和验证
基本信息
- 批准号:10587951
- 负责人:
- 金额:$ 108.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2028-01-31
- 项目状态:未结题
- 来源:
- 关键词:18 year oldAccident and Emergency departmentAddressAdultAntibioticsAnxietyApplied ResearchAreaAtelectasisAttentionBehaviorBindingBiological MarkersBiometryBlood PressureBlood capillariesC-reactive proteinCalibrationCaringChestChildChild CareChildhoodClinicalClinical ResearchCommunicable DiseasesComplementConfidence IntervalsDecision MakingDerivation procedureDeteriorationDevelopmentDiagnostic testsDiseaseDisease ProgressionEarly InterventionEmergency CareEmergency researchEnrollmentEnsureEpidemiologyEvaluationGoalsGuidelinesHealthHospitalizationHospitalized ChildHospitalsHourInfectionInfrastructureInpatientsInstitutionInterventionJudgmentKnowledgeLung diseasesMachine LearningMedicalMedical ErrorsMedicineMentored Patient-Oriented Research Career Development AwardNational Heart, Lung, and Blood InstituteNosocomial InfectionsObservational StudyOutcomeOutpatientsPatientsPediatric HospitalsPerformancePhasePleural effusion disorderPneumoniaPneumonia Severity IndexProspective, cohort studyProviderROC CurveRecommendationResearchResourcesRiskRisk EstimateRisk FactorsSchoolsSeveritiesSeverity of illnessSocietiesStandardizationTargeted ResearchTestingThoracic RadiographyTimeTractionUnited StatesValidationVariantViralWorkadverse outcomebiomarker selectionclinical decision-makingclinical riskcohortcommunity acquired pneumoniacostevidence baseexperiencehigh riskhospitalization ratesimplementation researchimprovedinnovationmortalitymultidisciplinarynovelnovel diagnosticsnovel therapeutic interventionpediatric emergencypersonalized approachpredictive modelingpredictive toolspreventprocalcitoninprognostic toolprognosticationprospectiverespiratoryrisk predictionrisk stratificationsuccesstoolviral detection
项目摘要
PROJECT SUMMARY
Although community-acquired pneumonia (CAP) is one of the most common serious infections in children and
a leading reason that children seek emergency care, no validated tools exist to predict CAP severity in
children. Without objective tools, management decisions are inefficient and potentially inaccurate, resulting in
unnecessary testing, treatment, and hospitalization in low-risk children or delays in critically important therapies
in those at high risk of severe CAP. The long-term goal of this research is to improve risk stratification of
children with CAP. In adults with CAP, the use of risk prediction rules decreases mortality and guides antibiotic
decisions, while minimizing hospitalizations for those at low risk. No validated risk prediction rules exist for
children presenting to the emergency department (ED) with CAP. We previously derived a 7-variable risk
prediction rule in 1128 children 3 months to 18 years old who presented to a single pediatric ED with
suspected CAP. To overcome limitations inherent in a rule derived in a single center, multicenter derivation
and external validation of a pediatric CAP risk prediction rule is necessary to ensure generalizability and inform
subsequent widespread implementation. We also found that biomarkers, including c-reactive protein,
procalcitonin, proadrenomedullin, and viral detection, are associated with severe outcomes in children with
CAP. It is unknown if the addition of these biomarkers to a clinical risk prediction rule will improve rule
performance. Led by a multidisciplinary team of experts in CAP, pediatric emergency and hospital medicine,
infectious diseases, biomarkers, epidemiology and biostatistics, prediction modeling, and machine learning, the
proposed research will address these important knowledge and research gaps through the following specific
aims: (1) To derive a severity risk prediction rule in a multicenter cohort of children presenting to the ED with
CAP; (2) To externally validate the derived prediction rule in children with CAP; and (3) To evaluate the ability
of biomarkers to improve predictive accuracy of a purely clinical risk prediction rule. This study will leverage the
robust infrastructure, experience, and expertise of the Pediatric Emergency Care Applied Research Network
(PECARN). We will accomplish the study aims by conducting a prospective multicenter observational study in
two phases. First, we will enroll 2000 children with CAP presenting to one of 7 PECARN EDs to derive the rule
over 2 years. We will then enroll 2000 children with CAP in 7 different PECARN EDs over the following 2 years
to externally validate the rule. A risk prediction rule in children with CAP will be significant in (a) advancing our
understanding of risk factors of CAP severity, (b) improving evidence-based management and clinical
outcomes by guiding and standardizing clinical decision making, and (c) facilitating future research. This
proposal is innovative as it will shift the paradigm of ED management of CAP, moving from subjective
decisions toward a novel, objective approach where individualized, evidence-based risk estimates can
augment and improve accuracy of clinical decision making.
项目摘要
虽然社区获得性肺炎(CAP)是儿童最常见的严重感染之一,
这是儿童寻求紧急护理的主要原因,目前还没有有效的工具来预测CAP的严重程度,
孩子没有客观的工具,管理决策效率低下,可能不准确,导致
低风险儿童不必要的检测、治疗和住院治疗,或延误关键治疗
严重CAP高危人群中。这项研究的长期目标是改善
儿童CAP在成人CAP患者中,使用风险预测规则可降低死亡率并指导抗生素治疗
这是一个决定,同时尽量减少低风险患者的住院治疗。不存在已验证的风险预测规则
患有CAP的儿童到急诊室(艾德)就诊。我们以前推导出一个7变量风险
在1128名3个月至18岁的儿童中,
疑似CAP为了克服在单中心、多中心推导中推导出的规则的固有局限性,
儿科CAP风险预测规则的外部验证是必要的,以确保普遍性和告知
随后广泛实施。我们还发现,生物标志物,包括c反应蛋白,
降钙素原、肾上腺髓质素原和病毒检测与儿童严重预后相关,
章尚不清楚将这些生物标志物添加到临床风险预测规则中是否会改善规则
性能由CAP、儿科急诊和医院医学的多学科专家团队领导,
传染病,生物标志物,流行病学和生物统计学,预测建模和机器学习,
拟议的研究将通过以下具体措施来填补这些重要的知识和研究空白
目的:(1)在一个多中心的艾德儿童队列中推导出严重风险预测规则,
CAP;(2)在CAP儿童中外部验证推导的预测规则;(3)评估能力
生物标志物,以提高纯临床风险预测规则的预测准确性。这项研究将利用
强大的基础设施,经验和儿科急诊应用研究网络的专业知识
(PECARN)。我们将通过开展一项前瞻性多中心观察性研究,
两个阶段。首先,我们将招募2000名CAP儿童,他们在7个PECARN ED中的一个中就诊,以推导规则
超过2年。然后,我们将在接下来的2年中在7个不同的PECARN ED中招募2000名CAP儿童
从外部验证规则。CAP儿童的风险预测规则将在以下方面具有重要意义:(a)推进我们的
了解CAP严重程度的危险因素,(B)改善循证管理和临床
通过指导和标准化临床决策,以及(c)促进未来的研究。这
建议是创新的,因为它将改变艾德管理CAP的范式,从主观的
决定采用一种新的、客观的方法,在这种方法中,个性化的、基于证据的风险估计可以
增强和提高临床决策的准确性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Todd Adam Florin其他文献
Todd Adam Florin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Todd Adam Florin', 18)}}的其他基金
Procalcitonin to Reduce Antibiotic Use in Pediatric Pneumonia (P-RAPP)
降钙素原可减少小儿肺炎中抗生素的使用 (P-RAPP)
- 批准号:
10248496 - 财政年份:2020
- 资助金额:
$ 108.51万 - 项目类别:
Procalcitonin to Reduce Antibiotic Use in Pediatric Pneumonia (P-RAPP)
降钙素原可减少小儿肺炎中抗生素的使用 (P-RAPP)
- 批准号:
10041764 - 财政年份:2020
- 资助金额:
$ 108.51万 - 项目类别:
Urinary Proadrenomedullin to Improve Risk Stratification of Children with Community-Acquired Pneumonia
尿肾上腺髓质素原可改善社区获得性肺炎儿童的风险分层
- 批准号:
9809185 - 财政年份:2019
- 资助金额:
$ 108.51万 - 项目类别:
Biomarkers and Risk Stratification in Pediatric Community-Acquired Pneumonia
儿科社区获得性肺炎的生物标志物和风险分层
- 批准号:
9206442 - 财政年份:2016
- 资助金额:
$ 108.51万 - 项目类别:
Biomarkers and Risk Stratification in Pediatric Community-Acquired Pneumonia
儿科社区获得性肺炎的生物标志物和风险分层
- 批准号:
9012197 - 财政年份:2016
- 资助金额:
$ 108.51万 - 项目类别: