Intrinsic and extrinsic spindle orientation mechanisms in mammalian epidermis

哺乳动物表皮的内在和外在纺锤体定向机制

基本信息

  • 批准号:
    10585931
  • 负责人:
  • 金额:
    $ 33.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-01 至 2026-01-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT Proper control of stem cell division is critical for tissue morphogenesis and homeostasis. When dysregulated, it can lead to hypoplasia and stem cell exhaustion on the one hand, or tissue overgrowth and cancer on the other. But mitosis is more than simple proliferation, as cell division can be controlled not only in time but also in space. Oriented cell divisions (OCDs) are an example of the latter, and for stem and progenitor cells, choices between division axes can dictate cell fate outcomes and impact tissue architecture. In stratified epithelia such as the epidermis, basal progenitors divide either within the plane of the epithelium, or perpendicular to it. Evidence suggests that planar divisions are generally self-renewing symmetric cell divisions (SCDs) while perpendicular divisions are differentiative asymmetric cell divisions (ACDs). Previous work from our lab has shown that ACDs are directed by a complex of polarity and spindle orientation proteins—converging on the critical scaffolding protein LGN (Gpsm2)—which localize asymmetrically at the apical cell cortex. More recently, we have found that the paralog AGS3 (Gpsm1) seems to oppose LGN, and functions in promoting SCDs through an unknown mechanism. In addition, we recently made the surprising discovery that division orientation is not fixed during metaphase, as previously thought, but can be further refined during late stages of mitosis. In this process, which we term “telophase correction,” roughly one-third of basal cells enter anaphase at oblique angles, but then reorient to either planar or perpendicular. We have learned that cell-cell adhesions—specifically, the mechanosensing components of the adherens junction—are important for telophase correction to occur, and can operate independently of LGN. This demonstrates that in addition to intrinsic cues such as the LGN complex, extrinsic factors such as the local tissue microenvironment influence the final division axis. Despite what we and others have learned about the molecular control of ACDs, major knowledge gaps exist in understanding how oriented divisions shape tissue architecture both during normal development and in congenital skin diseases such as epidermolysis bullosa and ectodermal dysplasia. Specifically, the objectives of this proposal are to develop a better understanding of 1) what regulates SCDs and how the choice between SCD/ACD is made (SA1), 2) how cell-cell adhesion, cell-matrix, and local cell density impact division orientation and fate decisions (SA2). To achieve these goals, we will leverage a combination of innovative approaches, centered on our rapid, high-throughput technique—lentiviral ultrasound-guided gene inactivation and gene expression (LUGGIGE)— which we will utilize to generate mouse models of both gene loss and of specific mutations found in human diseases. Combined with ex vivo imaging of skin explants and in vivo proteomic approaches to characterize the LGN and AGS3 interactomes using TurboID, these comprehensive studies will provide insights into the cell- intrinsic and extrinsic cues that determine division orientation, and how they operate during normal epidermal growth and in blistering and dysplastic skin diseases.
抽象的 干细胞分裂的正确控制对于组织形态发生和稳态至关重要。当失调时, 一方面会导致发育不全和干细胞耗竭,另一方面会导致组织过度生长和癌症。 但有丝分裂不仅仅是简单的增殖,因为细胞分裂不仅可以在时间上控制,而且可以在空间上控制。 定向细胞分裂(OCD)是后者的一个例子,对于干细胞和祖细胞来说,可以选择 分裂轴可以决定细胞命运结果并影响组织结构。在复层上皮中,例如 表皮,基底祖细胞在上皮平面内或垂直于上皮平面分裂。证据 表明平面分裂通常是自我更新的对称细胞分裂(SCD),而垂直分裂 分裂是分化的不对称细胞分裂(ACD)。我们实验室之前的工作表明,ACD 由极性和纺锤体方向蛋白复合体引导——汇聚在关键支架上 蛋白质 LGN (Gpsm2)——不对称地定位于顶细胞皮层。最近,我们发现 旁系同源物 AGS3 (Gpsm1) 似乎反对 LGN,并通过未知的方式促进 SCD 发挥作用 机制。此外,我们最近还有一个令人惊讶的发现,即在 正如之前所认为的,中期,但可以在有丝分裂的后期进一步细化。在这个过程中,哪 我们称之为“末期校正”,大约三分之一的基底细胞以斜角进入后期,但随后 重新定向为平面或垂直。我们已经了解到,细胞与细胞之间的粘附——具体来说, 粘附连接的机械传感成分——对于末期校正的发生很重要,并且 可以独立于 LGN 运行。这表明除了 LGN 复合体等内在线索外, 局部组织微环境等外在因素影响最终的分裂轴。尽管我们和 其他人已经了解了 ACD 的分子控制,但在理解如何控制 ACD 方面存在主要知识差距 定向分裂在正常发育和先天性皮肤病期间塑造组织结构 如大疱性表皮松解症和外胚层发育不良。具体而言,该提案的目标是 更好地理解 1) SCD 的监管因素以及如何在 SCD/ACD 之间做出选择 (SA1), 2) 细胞间粘附、细胞基质和局部细胞密度如何影响分裂方向和命运决定 (SA2)。为了实现这些目标,我们将结合创新方法,以我们的快速、 高通量技术——慢病毒超声引导基因失活和基因表达(LUGGIGE)—— 我们将利用它来生成基因丢失和人类中发现的特定突变的小鼠模型 疾病。结合皮肤外植体的离体成像和体内蛋白质组学方法来表征 LGN 和 AGS3 相互作用组使用 TurboID,这些全面的研究将提供对细胞的见解 决定分裂方向的内在和外在线索,以及它们在正常表皮过程中如何运作 生长以及水疱和发育不良的皮肤病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SCOTT E WILLIAMS其他文献

SCOTT E WILLIAMS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SCOTT E WILLIAMS', 18)}}的其他基金

Intrinsic and extrinsic spindle orientation mechanisms in mammalian epidermis
哺乳动物表皮的内在和外在纺锤体定向机制
  • 批准号:
    10210677
  • 财政年份:
    2021
  • 资助金额:
    $ 33.95万
  • 项目类别:
Intrinsic and extrinsic spindle orientation mechanisms in mammalian epidermis
哺乳动物表皮的内在和外在纺锤体定向机制
  • 批准号:
    10360689
  • 财政年份:
    2021
  • 资助金额:
    $ 33.95万
  • 项目类别:
A6A: GENETIC ANALYSIS: REPETITIVE DNA & HETEROCHROMATIN: KELOIDS & HYPERTENSION
A6A:遗传分析:重复 DNA
  • 批准号:
    6252532
  • 财政年份:
    1997
  • 资助金额:
    $ 33.95万
  • 项目类别:

相似海外基金

Oral pathogen - mediated pro-tumorigenic transformation through disruption of an Adherens Junction - associated RNAi machinery
通过破坏粘附连接相关的 RNAi 机制,口腔病原体介导促肿瘤转化
  • 批准号:
    10752248
  • 财政年份:
    2024
  • 资助金额:
    $ 33.95万
  • 项目类别:
Adherens junction dynamics and function in epithelial tissue morphogenesis
粘附连接动力学和上皮组织形态发生中的功能
  • 批准号:
    469118
  • 财政年份:
    2022
  • 资助金额:
    $ 33.95万
  • 项目类别:
    Operating Grants
Adherens Junction dysfunction in Hidradenitis Suppurativa
化脓性汗腺炎的粘附连接功能障碍
  • 批准号:
    10701323
  • 财政年份:
    2022
  • 资助金额:
    $ 33.95万
  • 项目类别:
Adherens junction proteins in neuron-glia interactions
神经元-胶质细胞相互作用中的粘附连接蛋白
  • 批准号:
    9978138
  • 财政年份:
    2019
  • 资助金额:
    $ 33.95万
  • 项目类别:
Elucidation of the function of Focal adherens junction in morphogenesis
阐明焦点粘附连接在形态发生中的功能
  • 批准号:
    19K16145
  • 财政年份:
    2019
  • 资助金额:
    $ 33.95万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Identifying and characterizing the effect of Aip1 on adherens junction remodeling in Drosophila follicular epithelium
鉴定和表征 Aip1 对果蝇滤泡上皮粘附连接重塑的影响
  • 批准号:
    528450-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 33.95万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Src-mediated pathways regulating adherens junction assembly.
Src 介导的途径调节粘附连接组装。
  • 批准号:
    10166863
  • 财政年份:
    2017
  • 资助金额:
    $ 33.95万
  • 项目类别:
Src-mediated pathways regulating adherens junction assembly.
Src 介导的途径调节粘附连接组装。
  • 批准号:
    9310733
  • 财政年份:
    2017
  • 资助金额:
    $ 33.95万
  • 项目类别:
The function and interaction of focal adhesion and adherens junction in bone mechanosensing and mechanotransduction.
粘着斑和粘附连接在骨力传感和力转导中的功能和相互作用。
  • 批准号:
    17K17307
  • 财政年份:
    2017
  • 资助金额:
    $ 33.95万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
a-catenin and its binding partners in adherens junction assembly and function
α-连环蛋白及其在粘附连接组装和功能中的结合伙伴
  • 批准号:
    357714
  • 财政年份:
    2016
  • 资助金额:
    $ 33.95万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了