Plasticity of spinal neural networks directly impacts motor control following peripheral nerve injury
脊髓神经网络的可塑性直接影响周围神经损伤后的运动控制
基本信息
- 批准号:10588691
- 负责人:
- 金额:$ 10.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAnatomyAnteriorAwardAxonAxotomyCellsCentral Nervous SystemCrush InjuryDevelopmentDisease modelDistalElectric StimulationEnvironmentExcisionFire - disastersGastrocnemius MuscleGenerationsGenesGeneticGlutamatesGoalsHyperreflexiaImplantIndividualInjuryInterneuronsJointsKnowledgeLimb structureMapsMedialMotionMotorMotor NeuronsMotor PathwaysMovementMuscleMuscle SpindlesNatural regenerationNerveNerve CrushNervous SystemNeuronsPathway interactionsPatientsPerformancePeripheralPeripheral NervesPeripheral Nervous SystemPeripheral nerve injuryPhenotypePhysiologicalPopulationProcessProductionProprioceptorRecoveryReflex actionRoboticsSensorySiteSourceSpinalSpinal CordStretchingSynapsesSynaptic TransmissionTestingTransgenic MiceTransgenic ModelVentral Horn of the Spinal CordVertebral columnWorkantagonistarmaxonal degenerationbehavioral responsecell typecomparison controldensitydesigner receptors exclusively activated by designer drugsdorsal hornexperienceexperimental studyin vivomotor controlmotor deficitmouse modelmulti-electrode arraysnerve injurynerve transectionneuralneural networkneurobiotinperipheral nerve damagepreservationpresynapticpreventreceptorrecruitreinnervationresponsesensory feedbackskillsstemstretch reflexsynaptic inhibitionsynaptogenesis
项目摘要
Project Summary/Abstract
Following peripheral nerve injury (PNI), sensory and motoneuron (MN) axons degenerate distal to the injury site
but both maintain the ability to regenerate and reinnervate their muscle targets. Motoneurons regain the ability
to produce muscle force and the majority of the muscle afferents (“propriosensors”) reinnervate the muscle
spindles and fire in response to muscle stretch. However, regardless of successful peripheral regeneration,
patients who experience PNI continue to suffer from life-long motor complications such as limb inter-joint
discoordination and muscle co-contraction. The central hypothesis of this proposal is that plasticity in the
connectivity of pre-motor spinal circuits following nerve injury results in permanent motor deficits.
Specific Aim 1 (K99), hypothesis: hyper-excitatory drive to the spinal pre-motor interneurons following nerve
transection promotes muscle co-contraction. Proprioceptor Ia afferent axons that synapse on spinal MNs are
permanently degraded in lamina IX following nerve cut resulting in the loss of the stretch reflex. However, these
same afferents double their synapses in the deep dorsal horn, where a heterogenous population of pre-motor
interneurons reside. One specific subset of these neurons are those that express Isl1. This specific population
of neurons are glutamatergic, project to divergent motor pools, and receive propriosensor input. An imbalance
in synaptic drive to these cells could facilitate muscle co-contraction. This will be investigated using a
combinatory approach with multi-electrode arrays (MEAs) and transgenic models to identify and manipulate the
activity of the Isl1+ neurons using chemogenetics in an attempt to restore normal muscle activity following injury.
Specific Aim 2 (R00), hypothesis: nerve crush abolishes presynaptic inhibition of Ia afferents and results in an
exaggerated stretch reflex force. In difference to a nerve cut, following a crush injury the stretch reflex is not only
restored it results in supra-normal levels of muscle force. One striking anatomical difference between these two
injury types is that Ia afferent synapses are restored on MNs following crush regeneration but they lose a
significant number of presynaptic inhibitory boutons (p-boutons) that gate Ia synaptic transmission. The
hypothesize of this aim is that the loss in p-boutons is responsible for the exaggerated stretch reflex response
after crush. In this aim will utilize chemogenetics to activate and/or suppress Gad2+ interneurons that provide
presynaptic inhibition during the stretch reflex to investigate how modulating the activity of these cells impact the
strength of the reflex. Then, Gad2 interneurons that provide the remaining p-boutons will be stimulated using
chemogenetics to reduces hyperreflexia after crush. Finally, electrical stimulation will be provided to the nerve
after crush to investigate if sustained activity of the afferents prevents the loss of p-boutons and restores normal
muscle force generation in response to stretch.
项目总结/摘要
周围神经损伤(PNI)后,感觉和运动神经元(MN)轴突在损伤部位远端变性
但两者都保持了再生和再神经支配其肌肉目标的能力。运动神经元恢复了
产生肌肉力量,大部分肌肉传入神经(“本体传感器”)重新支配肌肉
纺锤体和火对肌肉拉伸的反应。然而,不管外周再生是否成功,
经历PNI的患者继续遭受终身运动并发症,
失调和肌肉共同收缩。这一建议的核心假设是,
神经损伤后运动前脊髓回路的连通性导致永久性运动缺陷。
特定目的1(K99),假设:神经刺激后脊髓运动前中间神经元的超兴奋驱动
横切促进肌肉共同收缩。在脊髓MN上突触的本体感受器Ia传入轴突是
在神经切断后在椎板IX中永久降解,导致牵张反射的丧失。但这些
相同的传入神经使它们在深背角中的突触加倍,在那里,
interneurons驻留。这些神经元的一个特定子集是表达Isl 1的神经元。该特定人群
的神经元是突触能的,投射到不同的运动池,并接收本体传感器输入。不平衡
在突触驱动这些细胞可以促进肌肉共同收缩。这将使用
使用多电极阵列(MEA)和转基因模型的组合方法来鉴定和操纵
使用化学遗传学检测Isl 1+神经元的活性,试图恢复损伤后的正常肌肉活性。
特定目标2(R 00),假设:神经挤压消除了Ia传入神经的突触前抑制,并导致
过度的牵张反射力与神经切断不同,挤压伤后的牵张反射不仅
恢复后会产生超常的肌肉力量这两者在解剖学上的一个显著差异是
损伤类型是,在压碎再生后,MN上的Ia传入突触恢复,但它们失去了
显著数量的突触前抑制性终扣(p-终扣),其门控Ia突触传递。的
这一目的的一个假设是,p-终扣的缺失是导致过度牵张反射反应的原因
在Crush之后。在这个目标中,将利用化学遗传学来激活和/或抑制Gad 2+中间神经元,其提供
牵张反射过程中的突触前抑制,以研究调节这些细胞的活性如何影响神经元的功能。
反射的强度。然后,提供剩余p-结的Gad 2中间神经元将被刺激,
化学遗传学,以减少反射亢进后挤压。最后,将向神经提供电刺激,
研究传入神经的持续活动是否阻止了p-终扣的丢失并恢复正常
肌肉力量的产生对拉伸的反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Travis Michael Rotterman其他文献
Travis Michael Rotterman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Travis Michael Rotterman', 18)}}的其他基金
Preservation of sensory la afferent boutons on motoneurons after peripheral nerve injury restores synaptic transmissions and rescues whole limb kinematics
周围神经损伤后运动神经元上感觉传入神经元的保留可恢复突触传递并挽救整个肢体运动学
- 批准号:
9810482 - 财政年份:2019
- 资助金额:
$ 10.28万 - 项目类别:
Preservation of sensory la afferent boutons on motoneurons after peripheral nerve injury restores synaptic transmissions and rescues whole limb kinematics
周围神经损伤后运动神经元上感觉传入神经元的保留可恢复突触传递并挽救整个肢体运动学
- 批准号:
10462090 - 财政年份:2019
- 资助金额:
$ 10.28万 - 项目类别:
The involvement of microglia and peripheral macrophages in the permanent deletion of proprioceptive IA afferents from spinal motoneurons following peripheral nerve injury
小胶质细胞和外周巨噬细胞参与周围神经损伤后脊髓运动神经元本体感觉 IA 传入神经的永久缺失
- 批准号:
9051301 - 财政年份:2015
- 资助金额:
$ 10.28万 - 项目类别:
The involvement of microglia and peripheral macrophages in the permanent deletion of proprioceptive IA afferents from spinal motoneurons following peripheral nerve injury
小胶质细胞和外周巨噬细胞参与周围神经损伤后脊髓运动神经元本体感觉 IA 传入神经的永久缺失
- 批准号:
9170712 - 财政年份:2015
- 资助金额:
$ 10.28万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 10.28万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 10.28万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 10.28万 - 项目类别:
Studentship