Uncovering Molecular Targets for Arrhythmogenic Cardiomyopathy Therapeutics
发现致心律失常性心肌病治疗的分子靶点
基本信息
- 批准号:10588199
- 负责人:
- 金额:$ 39.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdherens JunctionAdultAgeArrhythmogenic Right Ventricular DysplasiaBiological AssayCRISPR/Cas technologyCardiacCardiac MyocytesCardiomyopathiesCellsComplexConnexinsDataDefectDesmosomesDiseaseDoseElectrophysiology (science)ExhibitsGene MutationGenesGeneticGenetic DiseasesGenomeGenomicsHeartHeart DiseasesHumanIn VitroIntercellular JunctionsInterventionKnock-in MouseLifeMechanicsMediatingMethodsModelingMolecularMolecular TargetMolecular WeightMusMutant Strains MiceMutateMutationNeonatalPathogenesisPathogenicityPatientsPhysiologicalProtein AnalysisProteinsRNARNA SplicingRNA StabilityRNA analysisRNA-Binding ProteinsSplice-Site MutationSudden DeathTechnologyTestingTherapeuticTherapeutic EffectTherapeutic UsesTranscriptViralarrhythmogenic cardiomyopathybasebase editingbase editordesigndisease-causing mutationgene therapyhuman diseasehuman modelin vivoinduced pluripotent stem cell derived cardiomyocytesinsightmanmouse modelmutantmutant mouse modelmutation correctionneonatal micenovelplakophilin 2preventprime editingprime editorprotein complexprotein degradationrestorationscaffoldtranscriptomicsyoung adult
项目摘要
Abstract
Arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) is an incurable genetic based cardiac
disease that causes sudden death in young adults and athletes. ARVD/C is termed a “disease of the
desmosome” as 40-50% of mutations in ARVD/C patients are found in desmosomal (junctional anchor) genes,
with plakophilin-2 (PKP2) being the most frequently mutated desmosomal gene. Evidence suggests that altered
RNA splicing may be a critical mechanism through which PKP2 patient genetics drive ARVD/C. However, no
models and limited mechanistic insights exist into how human desmosomal mutations in RNA splicing impact
ARVD/C and what form of therapeutics would be impactful in these settings. Through CRISPR-Cas9 we
generated a novel mouse model globally harboring a human PKP2 mutation (IVS10-1 G>C) that impacts RNA
splicing. PKP2 homozygous mutant (PKP2 Hom) mice selectively display all adult hallmarks of ARVD/C including
sudden death. RNA and sequencing analyses revealed low levels of a larger PKP2 transcript that retains an
intronic sequence. Protein analyses of PKP2 Hom hearts revealed low levels of a higher molecular weight PKP2
mutant protein that was expressed in the absence of endogenous PKP2. Strategies to increase wild type PKP2
and mutant PKP2 protein in PKP2 mutant neonatal cardiomyocytes suggested that splicing effects on PKP2
haploinsufficiency mechanistically drive cell junction deficits in early ARVD/C. Targeted restoration of PKP2
protein dose in neonatal PKP2 Hom mice had therapeutic potential in late ARVD/C as it restored cardiac
mechanical junction complex and prolonged life in adult PKP2 Hom mice. PKP2 Hom mice provide an ideal test
platform to assess the impact and mechanism of PKP2 restoration in circumventing ARVD/C in classic patient-
centric models during early and late stages of disease. Prime editing (search-and-replace) strategies have come
to age as novel methods to correct single base mutations and address the “root cause” of ARVD/C, though
limited studies have applied this technology towards therapeutic use in disease settings. We hypothesize the
PKP2 RNA splicing mutation is sufficient to drive ARVD/C through a mechanism impacting splicing
consequences on PKP2 protein dose. PKP2 targeted strategies (gene therapy and prime base editor-directed
correction) can be exploited to therapeutically alter ARVD/C. We aim to determine: (i) the pathogenic mechanism
by which PKP2 RNA splicing mutations drive ARVD/C, (ii) the impact and mechanism of early and late PKP2
restoration in our novel PKP2 mutant mouse and human ARVD/C models, and (iii) a base editing strategy to
correct the PKP2 (IVS10-1 G>C) mutation and assess its impact in our novel PKP2 mutant ARVD/C model.
摘要
致心律失常性右室发育不良/心肌病(ARVD/C)是一种不可治愈的遗传性心脏病
导致年轻人和运动员猝死的疾病。ARVD/C被称为“一种疾病”
由于ARVD/C患者40%-50%的突变是在桥粒(连接锚)基因中发现的,
其中,蛋白亲和素2(PKP2)是最常突变的桥粒基因。有证据表明,
RNA剪接可能是PKP2患者遗传学驱动ARVD/C的关键机制。
关于人类RNA剪接桥粒突变如何影响的模型和有限的机械性见解
ARVD/C以及什么形式的治疗在这些环境中会产生影响。通过CRISPR-CAS9 WE
建立了一种新的小鼠模型,该模型全局携带有影响RNA的人PKP2突变(IVS10-1G>;C)
拼接。PKP2纯合子突变(PKP2 Hom)小鼠选择性地表现出ARVD/C的所有成人特征,包括
猝死。RNA和测序分析显示,较大的PKP2转录本水平较低,保留了
内含子序列。PKP2人心脏的蛋白质分析显示,较高分子量的PKP2水平较低
在没有内源性PKP2的情况下表达的突变蛋白。增加野生型PKP2的策略
而在PKP2突变的新生心肌细胞中突变的PKP2蛋白表明剪接对PKP2的影响
单倍体功能不全导致ARVD/C早期细胞连接缺陷--PKP2靶向修复
新生PKP2Hom小鼠的蛋白质剂量在ARVD/C晚期具有治疗潜力,因为它恢复了心脏
机械连接复合体与成年PKP2Hom小鼠寿命延长。PKP2 Hom小鼠提供了理想的测试
评估PKP2修复对绕过经典患者ARVD/C的影响和机制的平台-
疾病早期和晚期的中心模型。主要的编辑(搜索和替换)策略已经出现
将老化作为纠正单碱基突变和解决ARVD/C的“根本原因”的新方法
有限的研究将这项技术应用于疾病环境中的治疗。我们假设
PKP2 RNA剪接突变足以通过影响剪接的机制驱动ARVD/C
对PKP2蛋白剂量的影响。PKP2靶向策略(基因治疗和基础编辑指导
可用于治疗改变ARVD/C。我们的目标是确定:(I)致病机制
PKP2 RNA剪接突变是如何驱动ARVD/C的,(Ii)早期和晚期PKP2的影响和机制
在我们新的PKP2突变小鼠和人类ARVD/C模型中的恢复,以及(Iii)碱基编辑策略
纠正PKP2(IVS10-1G>;C)突变,并评估其在我们新的PKP2突变ARVD/C模型中的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Farah Sheikh其他文献
Farah Sheikh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Farah Sheikh', 18)}}的其他基金
Determinants of Arrhythmogenic Risk In Arrhythmogenic Cardiomyopathies and Mitral Valve Prolapse
致心律失常性心肌病和二尖瓣脱垂的致心律失常风险的决定因素
- 批准号:
10853894 - 财政年份:2022
- 资助金额:
$ 39.5万 - 项目类别:
Uncovering New Functions of CSN6 in Cardiac Desmosomal Biology and Disease
揭示 CSN6 在心脏桥粒生物学和疾病中的新功能
- 批准号:
9754240 - 财政年份:2018
- 资助金额:
$ 39.5万 - 项目类别:
Uncovering New Functions of CSN6 in Cardiac Desmosomal Biology and Disease
揭示 CSN6 在心脏桥粒生物学和疾病中的新功能
- 批准号:
10220119 - 财政年份:2018
- 资助金额:
$ 39.5万 - 项目类别:
Uncovering New Functions of CSN6 in Cardiac Desmosomal Biology and Disease
揭示 CSN6 在心脏桥粒生物学和疾病中的新功能
- 批准号:
9973231 - 财政年份:2018
- 资助金额:
$ 39.5万 - 项目类别:
The molecular mechanisms underlying arrhythmogenic right ventricular dysplasia/cardiomyopathy
致心律失常性右心室发育不良/心肌病的分子机制
- 批准号:
9036430 - 财政年份:2009
- 资助金额:
$ 39.5万 - 项目类别:
The molecular mechanisms underlying arrhythmogenic right ventricular dysplasia/cardiomyopathy
致心律失常性右心室发育不良/心肌病的分子机制
- 批准号:
9244060 - 财政年份:2009
- 资助金额:
$ 39.5万 - 项目类别:
The molecular mechanisms underlying arrhythmogenic right ventricular dysplasia/ca
致心律失常性右心室发育不良/ca的分子机制
- 批准号:
7795808 - 财政年份:2009
- 资助金额:
$ 39.5万 - 项目类别:
The molecular mechanisms underlying arrhythmogenic right ventricular dysplasia/ca
致心律失常性右心室发育不良/ca的分子机制
- 批准号:
8121311 - 财政年份:2009
- 资助金额:
$ 39.5万 - 项目类别:
The molecular mechanisms underlying arrhythmogenic right ventricular dysplasia/ca
致心律失常性右心室发育不良/ca的分子机制
- 批准号:
8041043 - 财政年份:2009
- 资助金额:
$ 39.5万 - 项目类别:
The molecular mechanisms underlying arrhythmogenic right ventricular dysplasia/cardiomyopathy
致心律失常性右心室发育不良/心肌病的分子机制
- 批准号:
8884263 - 财政年份:2009
- 资助金额:
$ 39.5万 - 项目类别:
相似海外基金
Oral pathogen - mediated pro-tumorigenic transformation through disruption of an Adherens Junction - associated RNAi machinery
通过破坏粘附连接相关的 RNAi 机制,口腔病原体介导促肿瘤转化
- 批准号:
10752248 - 财政年份:2024
- 资助金额:
$ 39.5万 - 项目类别:
Adherens junction dynamics and function in epithelial tissue morphogenesis
粘附连接动力学和上皮组织形态发生中的功能
- 批准号:
469118 - 财政年份:2022
- 资助金额:
$ 39.5万 - 项目类别:
Operating Grants
Adherens Junction dysfunction in Hidradenitis Suppurativa
化脓性汗腺炎的粘附连接功能障碍
- 批准号:
10701323 - 财政年份:2022
- 资助金额:
$ 39.5万 - 项目类别:
Adherens junction proteins in neuron-glia interactions
神经元-胶质细胞相互作用中的粘附连接蛋白
- 批准号:
9978138 - 财政年份:2019
- 资助金额:
$ 39.5万 - 项目类别:
Elucidation of the function of Focal adherens junction in morphogenesis
阐明焦点粘附连接在形态发生中的功能
- 批准号:
19K16145 - 财政年份:2019
- 资助金额:
$ 39.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Identifying and characterizing the effect of Aip1 on adherens junction remodeling in Drosophila follicular epithelium
鉴定和表征 Aip1 对果蝇滤泡上皮粘附连接重塑的影响
- 批准号:
528450-2018 - 财政年份:2018
- 资助金额:
$ 39.5万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Src-mediated pathways regulating adherens junction assembly.
Src 介导的途径调节粘附连接组装。
- 批准号:
10166863 - 财政年份:2017
- 资助金额:
$ 39.5万 - 项目类别:
Src-mediated pathways regulating adherens junction assembly.
Src 介导的途径调节粘附连接组装。
- 批准号:
9310733 - 财政年份:2017
- 资助金额:
$ 39.5万 - 项目类别:
The function and interaction of focal adhesion and adherens junction in bone mechanosensing and mechanotransduction.
粘着斑和粘附连接在骨力传感和力转导中的功能和相互作用。
- 批准号:
17K17307 - 财政年份:2017
- 资助金额:
$ 39.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
a-catenin and its binding partners in adherens junction assembly and function
α-连环蛋白及其在粘附连接组装和功能中的结合伙伴
- 批准号:
357714 - 财政年份:2016
- 资助金额:
$ 39.5万 - 项目类别:
Operating Grants