Statistical Methods and Validation Analyses for the Integration of External Data in Clinical Trials
临床试验中外部数据整合的统计方法和验证分析
基本信息
- 批准号:10589150
- 负责人:
- 金额:$ 37.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-07 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAlgorithmsBiometryCharacteristicsClinicalClinical DataClinical ResearchClinical TrialsClinical Trials DesignCollectionComputer softwareDataData CollectionData SetDevelopmentDiseaseElectronic Health RecordEnrollmentEnsureEvaluationExperimental DesignsFailureFutureGlioblastomaHealthcareInvestmentsLiteratureMalignant neoplasm of lungMalignant neoplasm of prostateMeasurementMethodologyMethodsOutcomePatient RepresentativePatientsPhasePhase III Clinical TrialsPopulationProbabilityProceduresProcessPrognostic FactorRandomizedRandomized, Controlled TrialsRecommendationResearchResearch Project GrantsRiskRisk ReductionSample SizeStatistical Data InterpretationStatistical MethodsTestingTimeTreatment outcomeUnderrepresented MinorityValidationVariantarmcastration resistant prostate cancerclinical trial analysiscomorbiditycostdata qualitydesigndrug developmentimprovedinnovationnovelnovel therapeuticsoncology trialopen sourceparticipant enrollmentphase 2 designsprimary outcomeprognosticrandomized trialrandomized, clinical trialsrepositorysmall cell lung carcinomatreatment armtreatment effecttrial designvalidation studies
项目摘要
Project Summary/Abstract
Our research will focus on the use of external data, including previous clinical studies and real-world
datasets, in the design and analysis of phase II and III oncology trials. We consider, for example,
designs that include early stopping decisions based on data generated from the trial and external
patient-level data.
External datasets have the potential to improve final analyses and interim decisions of future single-
arm and randomized clinical trials. They can also accelerate the development of new treatments, by
reducing the number of patients that need to be enrolled in clinical studies and therefore their
duration. However the use of external information to analyze clinical trials is currently sporadic.
Indeed, the integration of external patient-level information to test new treatments can increase the
risk of bias in the evaluation of experimental treatments. An effective use of external data in the
design and analysis of clinical studies requires both, adequate statistical methodologies, and
validation analyses, to quantify risks and potential efficiency gains compared to standard statistical
plans of single-arm and randomized trial designs.
We will develop novel designs to use external data in future trials. We will use collections of datasets
in prostate cancer, glioblastoma, and lung cancer, including patient-level outcomes and prognostic
variables. These collections are necessary to effectively use external data in clinical studies. We will
then introduce and apply validation methods to evaluate statistical designs using disease-specific
data collections, inclusive of clinical trials and real world data. The validation summaries that we will
produce, will quantify the efficiency of trial designs and the risks of the integration of external data,
associated for example, to unmeasured confounders or measurement errors on prognostic variables
and outcome.
项目总结/摘要
我们的研究将侧重于使用外部数据,包括以前的临床研究和现实世界
数据集,用于II期和III期肿瘤学试验的设计和分析。例如,我们认为,
包括基于试验和外部数据的提前停止决策的设计
患者级数据。
外部数据集有可能改善未来单一项目的最终分析和中期决策,
手臂和随机临床试验。它们还可以加速新疗法的开发,
减少需要入组临床研究的患者数量,
持续时间然而,使用外部信息来分析临床试验目前是零星的。
事实上,整合外部患者水平的信息来测试新的治疗方法可以增加
实验性治疗评估中的偏倚风险。有效利用外部数据,
临床研究的设计和分析需要充分的统计方法,
验证分析,与标准统计数据相比,
单组和随机试验设计的计划。
我们将开发新的设计,在未来的试验中使用外部数据。我们将使用数据集的集合
在前列腺癌、胶质母细胞瘤和肺癌中,包括患者水平的结局和预后
变量这些收集对于在临床研究中有效使用外部数据是必要的。我们将
然后介绍和应用验证方法来评估统计设计,使用疾病特异性
数据收集,包括临床试验和真实的世界数据。我们将提供的验证总结
生产,将量化试验设计的效率和外部数据整合的风险,
例如,与未测量的混杂因素或预后变量的测量误差相关
和结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lorenzo Trippa其他文献
Lorenzo Trippa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lorenzo Trippa', 18)}}的其他基金
Statistical Methods and Validation Analyses for the Integration of External Data in Clinical Trials
临床试验中外部数据整合的统计方法和验证分析
- 批准号:
10386822 - 财政年份:2021
- 资助金额:
$ 37.62万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 37.62万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 37.62万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 37.62万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 37.62万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 37.62万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 37.62万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 37.62万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 37.62万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 37.62万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 37.62万 - 项目类别:
Continuing Grant