Neurodegenerative diseases and the role of green space: A deep learning assessment
神经退行性疾病和绿色空间的作用:深度学习评估
基本信息
- 批准号:10589100
- 负责人:
- 金额:$ 24.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAccountingAdultAffectAfrican AmericanAfrican American populationAgeAir PollutantsAlzheimer&aposs disease related dementiaAlzheimer&aposs disease riskBaltimoreBiologicalBiometryBlack raceCardiovascular DiseasesChicagoChineseCitiesClinicalComplementComplexCountyCross-Sectional StudiesDataData SourcesDiagnosisDimensionsDisparityElderlyEnvironmentEnvironmental HazardsEpidemiologyEthnic OriginEthnic PopulationExposure toFamilyFundingGeographic FactorGeographyGoalsGreen spaceHealthHealth BenefitHealthcare SystemsHispanicHispanic PopulationsHypertensionImageImageryImpaired cognitionIncidenceIndividualInterventionLife Cycle StagesLinkLiteratureLongitudinal StudiesLos AngelesMeasurementMeasuresMediatingMediationMediatorMental DepressionMental HealthMethodologyMethodsMinorityMulti-Ethnic Study of AtherosclerosisNeurodegenerative DisordersNew YorkNoiseNot Hispanic or LatinoPathway interactionsPatientsPhysical activityPlantsPoaceaePopulationPopulation HeterogeneityPrevalencePreventionPrevention strategyProspective cohortProspective, cohort studyQuestionnairesRaceResearchResolutionRiskRisk FactorsRisk ReductionRoleSocial EnvironmentSocial ImpactsTechniquesTimeTrainingTreesUnited States National Institutes of HealthWomanagedbuilt environmentcareercognitive functioncohortcomorbiditydeep learningdeep learning algorithmdementia riskdesigneconomic impactepidemiology studyethnic minorityhealthy aginghigh resolution imagingindexinginnovationinsightlongitudinal analysismenmultidimensional dataneurocognitive disordernew technologynovelphysical inactivitypublic health interventionracial disparityracial health disparityracial minorityracial minority populationracial populationsegmentation algorithmskillsurban public health
项目摘要
PROJECT SUMMARY
Alzheimer’s disease and related dementias (ADRD) have well-established risk factors such as physical activity (PA),
depression, and hypertension (HTN). These risk factors disproportionately affect racial minority populations, but the
mechanisms underlying racial health disparities are not well understood. In this, geographic factors could be key, as PA,
depression and HTN are strongly affected by geographic exposures, including green space. However, green space is
typically measured with questionnaires, which have substantial error, or satellite-based indexes that are nonspecific and
provide no information on the type of vegetation (e.g., tree vs. grass), nor whether the vegetation is within view at the street
level. As a result, no study has quantified the contribution of green space to racial disparities in ADRD. And while novel
technologies such as Google Street Views (GSV) imaging are promising data sources for capturing unique measures of
green space, managing, processing, and analyzing high-dimensional data present significant logistical and analytical
challenges, especially when linking these data to existing data from large prospective cohorts. Finally, we need to understand
green space in the context of other potentially correlated geographic exposures, or the urban exposome—the totality of life-
course geographic exposures (the set of green space, air pollutants, noise, built environment, and social environment)—to
estimate which factors drive health. This proposal will address these challenges by using GSV imaging to assess the effect
of green space on PA, depression, and HTN, as well as subsequent ADRD risk within the Multi-Ethnic Study of
Atherosclerosis (MESA)—a 10-year longitudinal study of 6,814 men and women without clinical cardiovascular disease at
baseline from 4 racial/ethnic groups (Non-Hispanic White, African-American, Chinese, and Hispanic). Aim 1 will quantify
the effect of specific aspects of green space (e.g. trees, grass, shrubs, plants) on ADRD and cognitive decline and evaluate
whether these associations differ according to race/ethnicity. Aim 2 will determine the indirect effect of green space on
ADRD that is mediated through PA, depression, and HTN. Aim 3 will quantify exposome associations with ADRD and
cognitive decline using untargeted data-driven approaches in conjunction with dimension reduction techniques and evaluate
whether they differ according to race/ethnicity. This research plan is complemented by a training plan that builds on the
applicant’s background in epidemiology and biostatistics and includes new training in (1) implementing deep learning
algorithms to analyze high-resolution geographic data, (2) cognitive function epidemiology, and (3) developing and refining
data-driven approaches to perform exposome-informed epidemiological studies. These combined plans will successfully
prepare the applicant for an independent research career focused on identifying modifiable geographic determinants of
ADRD in diverse populations using innovative measures of geographic context.
项目摘要
阿尔茨海默氏病和相关痴呆症(ADRD)具有良好的危险因素,例如体育活动(PA),
抑郁和高血压(HTN)。这些风险因素不成比例地影响少数族裔,但
种族健康差异的基础机制尚不清楚。在此,地理因素可能是关键,因为PA,
抑郁症和HTN受到包括绿色空间在内的地理暴露的强烈影响。但是,绿色空间是
通常用问卷调查,这些问卷具有实质性错误,或基于卫星的索引,这些索引是非特异性和
没有提供有关植被类型的信息(例如,树与草),也没有提供植被在街上是否在街上
等级。结果,没有研究量化了绿色空间对ADRD种族分布的贡献。而新颖
诸如Google Street Views(GSV)成像之类的技术是捕获独特测量的数据源
绿色空间,管理,处理和分析高维数据呈现出明显的后勤和分析
挑战,尤其是将这些数据与来自大型潜在人群的现有数据联系起来时。最后,我们需要了解
在其他潜在相关地理暴露或城市风险的背景下,绿色空间 - 生命的整体 -
课程地理暴露(绿色空间,空气污染物,噪音,建筑环境和社交环境)
估计哪些因素推动了健康。该建议将通过使用GSV成像来评估效果来解决这些挑战
PA,抑郁和HTN上的绿色空间以及随后的ADRD风险在多民族研究中
动脉粥样硬化(MESA) - 对6,814名没有临床心血管疾病的男性和女性进行的10年纵向研究
来自4个种族/族裔的基线(非西班牙裔白人,非裔美国人,中国和西班牙裔)。 AIM 1将量化
绿色空间(例如树木,草,灌木,植物)的特定方面对ADRD和认知能力下降和评估的影响
这些关联是否因种族/种族而有所不同。 AIM 2将确定绿色空间对
通过PA,抑郁和HTN介导的ADRD。 AIM 3将量化与ADRD的展览体关联,并
使用不靶向数据驱动的方法与降低技术结合使用并评估认知能力下降
它们是否根据种族/种族有所不同。该研究计划是由一项培训计划完成的
申请人在流行病学和生物统计学方面的背景,包括(1)实施深度学习的新培训
分析高分辨率地理数据,(2)认知功能流行病学和(3)开发和完善的算法
数据驱动的方法用于执行释放的流行病学研究。这些合并的计划将成功
为申请人准备独立研究职业,重点是确定可修改的地理决定
使用地理环境的创新度量在潜水员种群中的ADRD。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marcia Ixchel Pescador Jimenez其他文献
Marcia Ixchel Pescador Jimenez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marcia Ixchel Pescador Jimenez', 18)}}的其他基金
Neurodegenerative diseases and the role of green space: A deep learning assessment
神经退行性疾病和绿色空间的作用:深度学习评估
- 批准号:
10558165 - 财政年份:2020
- 资助金额:
$ 24.47万 - 项目类别:
相似国自然基金
签字注册会计师动态配置问题研究:基于临阵换师视角
- 批准号:72362023
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
全生命周期视域的会计师事务所分所一体化治理与审计风险控制研究
- 批准号:72372064
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
会计师事务所数字化能力构建:动机、经济后果及作用机制
- 批准号:72372028
- 批准年份:2023
- 资助金额:42.00 万元
- 项目类别:面上项目
会计师事务所薪酬激励机制:理论框架、激励效应检验与优化重构
- 批准号:72362001
- 批准年份:2023
- 资助金额:28.00 万元
- 项目类别:地区科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332002
- 批准年份:2023
- 资助金额:165.00 万元
- 项目类别:重点项目
相似海外基金
NeuroMAP Phase II - Recruitment and Assessment Core
NeuroMAP 第二阶段 - 招募和评估核心
- 批准号:
10711136 - 财政年份:2023
- 资助金额:
$ 24.47万 - 项目类别:
The Illinois Precision Medicine Consortium (IPMC) All of Us Research Program Site
伊利诺伊州精准医学联盟 (IPMC) All of Us 研究计划网站
- 批准号:
10872859 - 财政年份:2023
- 资助金额:
$ 24.47万 - 项目类别:
Validating Sensor-based Approaches for Monitoring Eating Behavior and Energy Intake by Accounting for Real-World Factors that Impact Accuracy and Acceptability
通过考虑影响准确性和可接受性的现实因素来验证基于传感器的饮食行为和能量摄入监测方法
- 批准号:
10636986 - 财政年份:2023
- 资助金额:
$ 24.47万 - 项目类别:
Wisconsin Registry for Alzheimer's Prevention
威斯康星州阿尔茨海默病预防登记处
- 批准号:
10655978 - 财政年份:2023
- 资助金额:
$ 24.47万 - 项目类别:
Myonuclear dynamics during skeletal muscle aging
骨骼肌衰老过程中的肌核动力学
- 批准号:
10714194 - 财政年份:2023
- 资助金额:
$ 24.47万 - 项目类别: