Nucleus accumbens fast-spiking interneurons regulate opioid reward and addiction
伏隔核快速尖峰中间神经元调节阿片类药物奖励和成瘾
基本信息
- 批准号:10561617
- 负责人:
- 金额:$ 16.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AcuteAmygdaloid structureAwardBehaviorBiological FactorsBrain regionCalciumCellsChronicCuesDataDependenceDevelopmentElectrophysiology (science)EpidemicFemaleFentanylFiberFoundationsFutureGeneticGenetic TechniquesGoalsImageInterneuronsInterventionKnowledgeMaintenanceMediatingMediatorMentorsMentorshipMinnesotaMissionModelingMolecularMotivationMusNational Institute of Drug AbuseNeuronsNucleus AccumbensOpiate AddictionOpioidOxycodonePathway interactionsPatternPharmaceutical PreparationsPhasePhotometryPlayPopulationPostdoctoral FellowPropertyProtocols documentationPsychological reinforcementPublic HealthPublicationsRelapseResearchRewardsRoleSelf AdministrationSynapsesSynaptic plasticityTechniquesTestingThalamic structureTherapeuticTrainingUnited States National Institutes of HealthUniversitiesViraladdictionattenuationbehavioral pharmacologybehavioral plasticitycareercareer developmentcombatdesigndesigner receptors exclusively activated by designer drugsdrug seeking behavioreffective interventionexperimental studyfentanyl self-administrationgenetic approachin vivoin vivo monitoringinnovationmalemu opioid receptorsneuralneural circuitneuroregulationnovelnovel therapeuticsopioid abuseopioid epidemicopioid use disorderoptogeneticspatch clamppost-doctoral trainingpreventprogramspublic health relevanceresponsereward circuitrysource localizationtooltranslational therapeutics
项目摘要
Project Abstract
Opioid addiction is a public health crisis, characterized by compulsive drug seeking and a pervasive
vulnerability to relapse, with few therapeutic options available. The nucleus accumbens (NAc) is a central hub
within reward circuitry and plays a critical role in the motivational value of drugs and drug-associated cues. Within
the heterogeneous neuronal subtypes of the NAc exist the sparsely distributed fast-spiking interneurons (FSIs).
The NAc FSIs receive strong excitatory inputs from cortical, thalamic and limbic regions and exert powerful
inhibition over the local projection neurons, making them a prime candidate for translational therapeutic
strategies to reduce the burden of the opioid abuse epidemic. The overall objectives of this application are to
elucidate how NAc FSI circuitry responds to, and mediates, opioid self-administration.
Under the primary mentorship of Dr. Patrick Rothwell at the University of Minnesota, Dr. Lefevre has
utilized graduate training in molecular and behavioral pharmacology techniques, and post-doctoral training in ex-
vivo electrophysiology to study adaptations in NAc circuitry in non-contingent opioid addiction models. This
Pathway to Independence Award will provide the opportunity to broaden the candidate’s expertise to include in
vivo fiber photometry calcium imaging, and chemogenetics, under the continued mentorship of Dr. Rothwell. To
expand career development in addiction research, Dr. Lefevre will receive additional support from co-mentor Dr.
Mark Thomas in the implementation of contingent opioid self-administration models in female and male mice.
During the mentored (K99) phase of the award, fiber photometry calcium imaging will be used to monitor
in vivo activity patterns of NAc FSIs in an Intermittent Access (IntA) fentanyl self-administration protocol to identify
how this neural population responds to contingent fentanyl and fentanyl-associated cues. Subsequently, a
chemogenetic approach, which will involve targeted expression of Designer Receptors Exclusively Activated by
Designer Drugs (DREADDs) by NAc FSIs, will be used to test the hypothesis that these neurons play a functional
role in addiction-related behavior. Following fentanyl self-administration, DREADDs will be used to excite or
inhibit NAc FSIs prior to progressive ratio and cue-induced reinstatement tests. This innovative combination of
tools will be used to test the relationship between NAc FSIs and the manifestation of fentanyl self-administration.
The R00 phase of the award will distinguish Dr. Lefevre’s independent research from her mentors and
broaden to identifying the role of excitatory synaptic inputs to NAc FSIs. Ex-vivo electrophysiology will be utilized
to define input-specific excitatory synaptic plasticity adaptations in NAc FSIs induced by fentanyl self-
administration. Additionally, the R00 aims will incorporate electrophysiology, optogenetic and calcium imaging
expertise to develop stimulation protocols that restore opioid induced shifts in FSI circuitry and addiction-like
behavior. Overall, the aims proposed in this award will identify key FSI circuits in opioid self-administration and
provide the foundation for Dr. Lefevre’s independent research program studying the neural circuitry of addiction.
项目摘要
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emilia M Lefevre其他文献
Emilia M Lefevre的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emilia M Lefevre', 18)}}的其他基金
Nucleus accumbens fast-spiking interneurons regulate opioid reward and addiction
伏隔核快速尖峰中间神经元调节阿片类药物奖励和成瘾
- 批准号:
10369837 - 财政年份:2022
- 资助金额:
$ 16.46万 - 项目类别: