Dissecting the role of thalamostriatal circuits in flexible versus automatized motor skill execution
剖析丘脑纹状体回路在灵活与自动化运动技能执行中的作用
基本信息
- 批准号:10237116
- 负责人:
- 金额:$ 4.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnatomyAnimalsBehaviorBehavioralBehavioral ParadigmCalciumCell NucleusCellsCorpus striatum structureCoupledDorsalFoodForelimbGlutamatesGoalsHabitsHeadHumanImageInvestigationJoystickLateralLeadLearningLeftLesionLightMedialMediatingMotorMotor SkillsMovementMusN-MethylaspartateNatureNeuronsOutcomePerformancePhasePopulationProcessResearchRewardsRodentRoleSensorySignal TransductionSongbirdsStructureSystemTestingThalamic NucleiThalamic structureTimeTrainingdesignexperimental studyfightingflexibilitymotor controlmotor learningmotor skill learningneuromechanismneurotransmissionnonhuman primatenoveloptogeneticsrelating to nervous systemskillstwo-photon
项目摘要
Project Summary / Abstract
Over the course of our lives, we learn to perform a wide variety of actions. From reaching for food or fighting off
an enemy, many actions require exact motor control to successfully lead to a desirable outcome. Learning to
perform a novel action starts with the action being behaviorally flexible, and eventually transitions to
automatized execution. How are these behaviorally flexible and automatized actions generated? The neural
mechanism of motor learning has not been fully elucidated, but has been posited to arise from integrating
neuronal signals about motor commands, environmental context, and outcome in the striatum. The dorsal
medial striatum (DMS) is important for early learning and goal-directed action, while the dorsal lateral striatum
(DLS) is more important for automatization and habit formation. I hypothesize that thalamic input into the DMS
mediates flexible performance of motor skills and thalamic input into the DLS maintains automatic execution of
motor skills. It has been shown that plasticity of glutamatergic inputs to the striatum are critical for motor
learning. Previous investigations into striatal information integration have focused on the glutamatergic cortical
projections to dorsal striatum. What has been largely ignored is that the dorsal striatum does not receive
glutamatergic input only from the cortex, but also from the thalamus. It has been shown that lesions of specific
thalamic nuclei that project to the dorsal striatum produce deficits in goal-directed learning and reward
devaluation. The two densest thalamostriatal projections come from the parafasicular nucleus (Pf) and the
posterimedial nucleus (POm). Medial-Pf (mPF) projects broadly to DMS, while lateral-Pf (lPf) and POm project
to DLS. This segregated projection circuitry of Pf and POm and the established roles of DMS and DLS in
distinct phases of motor learning, suggest that thalamic projections to DLS and DMS may have different roles
in early and late motor learning. Aim 1 will focus on building a novel head-fixed behavioral paradigm (the
joystick task) in which mice learn to perform forelimb motor actions. Aim 2 will characterize the activity of
thalamic inputs to DMS and DLS during flexible and automatic performance of the joystick task from Aim 1.
Aim 3 will elucidate if Pf and POm are necessary for flexible and automatic performance of motor skills by
optogenetically manipulating the thalamic nuclei’s activity during performance of the joystick task from Aim 1.
These experiments will be the first to dissect the role of thalamostriatal projections during motor learning in
behaving mice coupled with detailed population level analysis using 2-photon calcium imaging. Exploring the
role of these striatal inputs will shed light on the elusive nature of the thalamus, an evolutionarily ancient
structure, and its critical role in motor learning.
项目总结/摘要
在我们的生活中,我们学会了各种各样的行为。从伸手去拿食物或反抗
敌人,许多行动需要精确的运动控制,以成功地导致一个理想的结果。学习
执行一个新的行动开始与行动是灵活的行为,并最终过渡到
自动执行。这些行为灵活和自动化的行动是如何产生的?神经
运动学习的机制尚未完全阐明,但已被假定为来自整合
关于运动指令、环境背景和纹状体结果的神经元信号。背
内侧纹状体(DMS)是重要的早期学习和目标导向的行动,而背外侧纹状体
(DLS)对自动化和习惯的形成更为重要。我假设丘脑对DMS的输入
调节运动技能的灵活表现,丘脑输入DLS维持自动执行
运动技能已经表明,纹状体的多巴胺能输入的可塑性对于运动神经元的运动功能是至关重要的。
学习以前对纹状体信息整合的研究主要集中在纹状体皮层
向背侧纹状体的投射。但人们在很大程度上忽略了背侧纹状体并不接受
脑电的输入不仅来自皮层,也来自丘脑。已经表明,特定的病变
投射到背侧纹状体的丘脑核团在目标导向学习和奖励方面产生缺陷
贬值。丘脑纹状体的两个致密投射来自束旁核(Pf),
后内侧核(POm)。内侧Pf(mPF)广泛投射到DMS,而外侧Pf(lPf)和POM投射到DMS。
到DLS。这种分离的Pf和POm的投射回路以及DMS和DLS的既定作用,
运动学习的不同阶段,表明丘脑对DLS和DMS的投射可能具有不同的作用
在早期和晚期的运动学习中。目标1将专注于建立一个新的头部固定行为范式(
操纵杆任务),其中小鼠学习执行前肢运动动作。目标2将描述
在灵活和自动执行目标1的操纵杆任务期间,丘脑输入DMS和DLS。
目标3将阐明Pf和POm是否是灵活和自动执行运动技能所必需的,
在执行来自Aim 1的操纵杆任务期间,光遗传学操纵丘脑核的活性。
这些实验将是第一个剖析丘脑纹状体投射在运动学习中的作用的实验。
行为的小鼠结合使用双光子钙成像的详细群体水平分析。探索
这些纹状体输入的作用将揭示丘脑的难以捉摸的本质,一个进化上古老的
结构及其在运动学习中的关键作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leslie J Sibener其他文献
Leslie J Sibener的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leslie J Sibener', 18)}}的其他基金
Dissecting the role of thalamostriatal circuits in flexible versus automatized motor skill execution
剖析丘脑纹状体回路在灵活与自动化运动技能执行中的作用
- 批准号:
9760099 - 财政年份:2019
- 资助金额:
$ 4.6万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 4.6万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 4.6万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 4.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 4.6万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 4.6万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 4.6万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 4.6万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 4.6万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 4.6万 - 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
- 批准号:
BB/X013049/1 - 财政年份:2023
- 资助金额:
$ 4.6万 - 项目类别:
Research Grant