Enhancing miRNA Therapeutics through Combinatorial Targeting and Vehicle Free Delivery

通过组合靶向和无载体递送增强 miRNA 治疗

基本信息

  • 批准号:
    10237907
  • 负责人:
  • 金额:
    $ 35.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-30 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

MicroRNAs (miRNAs) have emerged as powerful regulators of the genome and, through concerted efforts to identify their function and evaluate their ability to alter cell growth in vitro and in vivo, some have gained favor as potential therapeutics. Although these miRNA-based approaches can revolutionize the way that tumors are diagnosed and treated, our understanding of the functional and the molecular aspects of miRNA biology are still incomplete. Moreover, in order to bridge miRNA biology with clinical utility, the challenges that still remain with regard to in vivo delivery of miRNAs must be tackled. To address these challenges we propose two Specific Aims: I. To enhance miRNA therapeutic efficacy through combinatorial miRNA-based targeting and molecular profiling and II. To develop and test second-generation vehicles for delivery of unprotected miRNAs. Our extensive preliminary evidence supports both Aims. We recently identified 10 miRNAs out of 2,019 that significantly enhance the tumor suppressive activity of miR-34a, the first miRNA to enter into clinical trial, and have begun to identify the direct targets of these miRNAs to gain insight into the molecular reason for the cooperative effect. We used a novel method that relies on ligating the cellular miRNAs directly to their associated RNA target followed by deep sequencing of the RNA hybrids. The sequencing data from 13 libraries that we constructed will be used to identify the direct targets of these miRNAs, independent of current algorithms. Targets will be validated and evaluated for pathways that they associate with that will begin to explain their cooperative effect with miR-34a. We also propose to evaluate the in vivo efficacy of the combinatorial pairs using various models of lung cancer. Although we are committed to understanding how these miRNAs are cooperating with miR-34a we also propose to use this data to better understand miRNA biology at a global level. Thus, our data will be used to determine how miRNAs associate with their targets at nucleotide resolution, and how the target population changes with regard to miRNA concentration, which is extremely important to understand as miRNA clinical utility increases. In parallel we will develop and test a second-generation miRNA delivery vehicle, which is a first-in-class method for delivering miRNAs completely unprotected. Following systemic delivery using this method, the miRNA accumulates specifically in the tumor and is efficiently taken up by the tumorigenic cells as indicated by target gene repression with no obvious toxicity. Collectively, the data obtained from this work will validate in vivo efficacy for combinatorial miRNA therapeutics, and for the first time will provide evidence for unprotected miRNA delivery. We will also begin to break down the barriers regarding miRNA target identification that until now has been mostly approached using algorithms that lack critical parameters due to a gap in our understanding of how miRNAs bind their targets.
MicroRNAs(MiRNAs)已经成为基因组的强大调节者,通过共同努力 鉴定它们的功能并评估它们在体外和体内改变细胞生长的能力,一些已经获得了青睐 作为潜在的治疗方法。尽管这些基于miRNA的方法可以彻底改变肿瘤的治疗方式 诊断和治疗,我们对miRNA生物学的功能和分子方面的理解是 仍然不完整。此外,为了将miRNA生物学与临床应用联系起来,仍然存在的挑战 关于体内传递miRNAs的问题,必须加以解决。为了应对这些挑战,我们提出了两项建议 具体目标:一、通过以miRNA为基础的组合靶向和 分子图谱和ii.开发和测试第二代载体,用于交付未受保护的miRNAs。 我们广泛的初步证据支持这两个目标。我们最近在2,019个miRNAs中确定了10个 这大大增强了首个进入临床试验的miRNA miR-34a的抑瘤活性, 并已开始确定这些miRNAs的直接靶点,以深入了解导致 协同效应。我们使用了一种新的方法,依赖于将细胞内的miRNA直接连接到它们的 相关的RNA靶标,然后对RNA杂交物进行深度测序。来自13年的测序数据 我们构建的文库将用于识别这些miRNAs的直接靶标,与当前的 算法。将验证和评估目标所关联的路径,这些路径将开始 解释它们与miR-34a的协同效应。我们还建议评估该疫苗的体内疗效。 使用不同肺癌模型的组合配对。尽管我们致力于了解如何 这些miRNA正在与miR-34a合作,我们还建议使用这些数据来更好地了解miRNA 全球范围内的生物学。因此,我们的数据将被用来确定miRNAs如何与其目标在 核苷酸分辨率,以及目标种群如何相对于miRNA浓度发生变化,这是 随着miRNA临床效用的增加,了解这一点极其重要。同时,我们将开发和测试一个 第二代miRNA递送工具,这是一种一流的完全递送miRNA的方法 没有保护措施。在使用这种方法全身给药后,miRNA在肿瘤中特异地积聚。 如靶基因抑制所示,它被肿瘤细胞有效地摄取,没有明显的 毒性。总的来说,从这项工作中获得的数据将在体内验证组合miRNA的有效性 这将首次提供不受保护的miRNA传递的证据。我们也将开始 打破有关miRNA靶标识别的障碍,到目前为止,这些障碍主要是通过 由于我们对miRNAs如何结合其靶标的理解存在差距,缺乏关键参数的算法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrea L Kasinski其他文献

Andrea L Kasinski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrea L Kasinski', 18)}}的其他基金

Ligand-mediated, vehicle-free delivery of small RNAs
配体介导的无载体小 RNA 递送
  • 批准号:
    10378528
  • 财政年份:
    2018
  • 资助金额:
    $ 35.46万
  • 项目类别:
Ligand-mediated, vehicle-free delivery of small RNAs
配体介导的无载体小 RNA 递送
  • 批准号:
    9895659
  • 财政年份:
    2018
  • 资助金额:
    $ 35.46万
  • 项目类别:
Ligand-mediated, vehicle-free delivery of small RNAs
配体介导的无载体小 RNA 递送
  • 批准号:
    10737260
  • 财政年份:
    2018
  • 资助金额:
    $ 35.46万
  • 项目类别:
Enhancing miRNA Therapeutics through Combinatorial Targeting and Vehicle Free Delivery
通过组合靶向和无载体递送增强 miRNA 治疗
  • 批准号:
    9571240
  • 财政年份:
    2017
  • 资助金额:
    $ 35.46万
  • 项目类别:
Enhancing miRNA Therapeutics through Combinatorial Targeting and Vehicle Free Delivery
通过组合靶向和无载体递送增强 miRNA 治疗
  • 批准号:
    9247601
  • 财政年份:
    2017
  • 资助金额:
    $ 35.46万
  • 项目类别:
Identification and therapeutic application of miRNA-drivers in lung cancer
肺癌中 miRNA 驱动因子的鉴定和治疗应用
  • 批准号:
    8566534
  • 财政年份:
    2013
  • 资助金额:
    $ 35.46万
  • 项目类别:
Therapeutic use of let-7 and miR-34 microRNAs for the prevention and treatment of
let-7 和 miR-34 microRNA 在预防和治疗以下疾病中的治疗用途
  • 批准号:
    8003034
  • 财政年份:
    2010
  • 资助金额:
    $ 35.46万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 35.46万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了