Collaborative Platform for Developing Sepsis Products by Leveraging Sepsis Endotypes Developed Using a Unified Biomarker-Clinical Dataset
利用统一生物标志物临床数据集开发的脓毒症内型来开发脓毒症产品的协作平台
基本信息
- 批准号:10252921
- 负责人:
- 金额:$ 98.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-05 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAlgorithmsAntibioticsAwardBackBiological AssayBiological MarkersBlood specimenBusinessesCause of DeathChargeClinicalClinical DataCollaborationsComplexComputer softwareComputerized Medical RecordContractsDataData SecurityData SetData Storage and RetrievalDerivation procedureDiagnosisDropsElementsEnvironmentExcisionFeesFunctional disorderFutureGenerationsGoalsGovernment AgenciesHealthHealthcare SystemsHospitalsHourImmune responseInfectionMeasurementMeasuresOrganOutcomePatientsPharmaceutical PreparationsPhysiciansPrincipal InvestigatorProteinsReportingResearch PersonnelResourcesRiskSample SizeSamplingSecureSecuritySecurity MeasuresSepsisSeriesShockSiteSurvival RateSyndromeTechnologyTimeTrainingTriageUnited StatesUniversity HospitalsValidationWorkalgorithm trainingbasebiobankclinical decision supportcohortcommercializationcostdata de-identificationdata hostingencryptionhealth information technologymachine learning algorithmpaymentpreventprogramssample collectionscreeningspecific biomarkerssuccesssupport toolstoolunsupervised learning
项目摘要
Principal Investigator/Program Director (Last, first, middle): Reddy, Jr., Bobby
Project Summary:
Sepsis is a poorly understood clinical syndrome characterized by a dysregulation of the immune system’s
response to infection. It is the leading cause of death and is the most expensive condition treated in U.S. hospitals,
exerting a $20.3 billion burden in 2011, 5.2% of total costs to the healthcare system nationwide. One of the major
challenges facing clinicians is to identify and recognize patients with sepsis and impending organ dysfunction.
The clinical manifestations of sepsis are highly variable and the signs of infection and organ dysfunction can be
subtle and may mimic other conditions. Sepsis is also highly time critical. Every 1-hour delay in antibiotics after
emergency department (ED) triage or the onset of organ dysfunction or shock is associated with a 3–7% increase
in the odds of a poor outcome. These conditions have created an environment where physicians have to diagnose
a complex, heterogeneous condition in a short timeframe with limited information. There is currently a dire need
for a tool that can quickly assess if a patient is at risk for sepsis.
Prenosis is a company focused on elucidating the complexity of dysregulated host response to infection. In
partnership with 4 hospitals, we have built the world’s largest and most rapidly growing dataset & data-rich
biobank that combine time series biomarker data with clinical data for patients suspected of infection in hospital
environments. This dataset & biobank currently have >2,000 patients, >70,000 proprietary biomarker
measurements, >1,200,000 Electronic Medical Record (EMR) parameters, and >25,000 samples banked (all
with accompanying full time series EMR data). We currently have executed contracts for 6 total hospital
partnerships, with the potential to expand the dataset by >65,000 patients per year if our pipeline were at full
capacity.
In this proposed project, Prenosis will finalize the first version of the NOSISTM platform by growing our current
proprietary dataset & biobank from its current size of about 2,000 patients to over 10,000 total patients (Aim
1). Using the current 2,000 patient dataset, we have demonstrated initial promising endotypes of sepsis that
could be useful for a variety of critical clinical problems. As we grow the dataset to 10,000 patients, we will use
unsupervised machine learning algorithms trained on roughly half of the patients (5,000) to definitively prove
the robustness and usefulness of these endotypes. The other half of the patients (other 5,000) will be used as a
multi-site validation cohort for the endotypes determined by the ML algorithms (Aim 2). We will also finalize
the actual software platform for the NOSISTM product (Aim 3), including data security, restricted access by
collaborators to train and jointly develop products, and templates for business partnerships with potential
collaborators (with an initial focus on HIT companies and pharma companies).
首席研究员/计划主任(最后,第一,中间):小雷迪,鲍比
项目摘要:
败血症是一种知识熟悉的临床综合征,其特征是免疫系统的失调
对感染的反应。这是死亡的主要原因,是美国医院治疗的最昂贵病情,
2011年,烧毁了203亿美元的燃烧,全国医疗保健系统的总成本的5.2%。专业之一
临床医生面临的挑战是识别和识别败血症患者和即将发生的器官功能障碍。
败血症的临床表现高度可变,感染和器官功能障碍的迹象可能是
微妙,可能模仿其他条件。败血症也很重要。每1小时的抗生素延迟
紧急部门(ED)分类或器官功能障碍或冲击的发作与增加3–7%有关
结果很差。这些条件创造了一个必须诊断的环境
在短时间内的复杂,异构条件,信息有限。目前有艰巨的需求
对于可以快速评估患者是否有败血症风险的工具。
Prenosis是一家致力于阐明宿主对感染反应失调的复杂性的公司。在
与4家医院的合作伙伴关系,我们建立了世界上最大,增长最快的数据集和数据集
将时间序列生物标志物数据与临床数据相结合的生物库,用于涉嫌在医院感染的患者
环境。该数据集和生物库目前有> 2,000名患者,> 70,000个专有生物标志物
测量>> 1,200,000电子病历(EMR)参数,> 25,000个样品(全部)
随着参与的全日制EMR数据)。我们目前已经签订了6家医院的合同
合作伙伴关系,如果我们的管道满足,则有可能每年扩大> 65,000名患者
容量。
在这个拟议的项目中,Prenosis将通过增长我们的当前
专有数据集和生物库目前的大约2,000名患者到超过10,000名患者(AIM
1)。使用当前的2,000名患者数据集,我们证明了败血症的初始承诺内型
对于各种关键的临床问题可能很有用。当我们将数据集增加到10,000名患者时,我们将使用
对大约一半的患者(5,000)培训的无监督的机器学习算法,以明确证明
这些内型的鲁棒性和实用性。另一半患者(其他5,000例)将用作
由ML算法确定的内型的多站点验证队列(AIM 2)。我们还将最终确定
NoSistm产品的实际软件平台(AIM 3),包括数据安全性,限制访问权限
合作者培训和共同开发产品,以及具有潜在的业务合作伙伴关系的模板
合作者(最初关注热门公司和制药公司)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bobby Reddy其他文献
Bobby Reddy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bobby Reddy', 18)}}的其他基金
Combined Biomarker and EMR Data for Heterogeneous Treatment Effects and Surrogate Endpoints in Sepsis
脓毒症异质治疗效果和替代终点的生物标志物和 EMR 数据相结合
- 批准号:
10603924 - 财政年份:2023
- 资助金额:
$ 98.95万 - 项目类别:
Use of Time Series Biomarker and Clinical Data to Construct a Time Trajectory Host Response Map
使用时间序列生物标志物和临床数据构建时间轨迹宿主响应图
- 批准号:
10699456 - 财政年份:2023
- 资助金额:
$ 98.95万 - 项目类别:
Collaborative Platform for Developing Sepsis Products by Leveraging Sepsis Endotypes Developed Using a Unified Biomarker-Clinical Dataset
利用统一生物标志物临床数据集开发的脓毒症内型来开发脓毒症产品的协作平台
- 批准号:
10082229 - 财政年份:2020
- 资助金额:
$ 98.95万 - 项目类别:
Point of Care Device for Reducing Overuse of Antibiotics in Potentially Septic Hospital Populations
用于减少潜在脓毒症医院人群过度使用抗生素的护理设备
- 批准号:
9410203 - 财政年份:2017
- 资助金额:
$ 98.95万 - 项目类别:
相似国自然基金
分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
- 批准号:12371308
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
资源受限下集成学习算法设计与硬件实现研究
- 批准号:62372198
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于物理信息神经网络的电磁场快速算法研究
- 批准号:52377005
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
- 批准号:12302257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高维不平衡数据的分类集成算法研究
- 批准号:62306119
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Scalable and Interoperable framework for a clinically diverse and generalizable sepsis Biorepository using Electronic alerts for Recruitment driven by Artificial Intelligence (short title: SIBER-AI)
使用人工智能驱动的招募电子警报的临床多样化和通用脓毒症生物库的可扩展和可互操作框架(简称:SIBER-AI)
- 批准号:
10576015 - 财政年份:2023
- 资助金额:
$ 98.95万 - 项目类别:
Identifying patient subgroups and processes of care that cause outcome differences following ICU vs. ward triage among patients with acute respiratory failure and sepsis
确定急性呼吸衰竭和脓毒症患者在 ICU 与病房分诊后导致结局差异的患者亚组和护理流程
- 批准号:
10734357 - 财政年份:2023
- 资助金额:
$ 98.95万 - 项目类别:
Development and implementation of a pediatric AI multi-modal digital stethoscope and respiratory surveillance system in South Africa
在南非开发和实施儿科人工智能多模态数字听诊器和呼吸监测系统
- 批准号:
10740943 - 财政年份:2023
- 资助金额:
$ 98.95万 - 项目类别:
Implementation of Continuum of Care Sepsis Phenotyping and Risk Stratification
脓毒症表型分析和风险分层连续护理的实施
- 批准号:
10429829 - 财政年份:2022
- 资助金额:
$ 98.95万 - 项目类别:
Implementation of Continuum of Care Sepsis Phenotyping and Risk Stratification
脓毒症表型分析和风险分层连续护理的实施
- 批准号:
10612933 - 财政年份:2022
- 资助金额:
$ 98.95万 - 项目类别: