Collaborative Platform for Developing Sepsis Products by Leveraging Sepsis Endotypes Developed Using a Unified Biomarker-Clinical Dataset
利用统一生物标志物临床数据集开发的脓毒症内型来开发脓毒症产品的协作平台
基本信息
- 批准号:10252921
- 负责人:
- 金额:$ 98.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-05 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAlgorithmsAntibioticsAwardBackBiological AssayBiological MarkersBlood specimenBusinessesCause of DeathChargeClinicalClinical DataCollaborationsComplexComputer softwareComputerized Medical RecordContractsDataData SecurityData SetData Storage and RetrievalDerivation procedureDiagnosisDropsElementsEnvironmentExcisionFeesFunctional disorderFutureGenerationsGoalsGovernment AgenciesHealthHealthcare SystemsHospitalsHourImmune responseInfectionMeasurementMeasuresOrganOutcomePatientsPharmaceutical PreparationsPhysiciansPrincipal InvestigatorProteinsReportingResearch PersonnelResourcesRiskSample SizeSamplingSecureSecuritySecurity MeasuresSepsisSeriesShockSiteSurvival RateSyndromeTechnologyTimeTrainingTriageUnited StatesUniversity HospitalsValidationWorkalgorithm trainingbasebiobankclinical decision supportcohortcommercializationcostdata de-identificationdata hostingencryptionhealth information technologymachine learning algorithmpaymentpreventprogramssample collectionscreeningspecific biomarkerssuccesssupport toolstoolunsupervised learning
项目摘要
Principal Investigator/Program Director (Last, first, middle): Reddy, Jr., Bobby
Project Summary:
Sepsis is a poorly understood clinical syndrome characterized by a dysregulation of the immune system’s
response to infection. It is the leading cause of death and is the most expensive condition treated in U.S. hospitals,
exerting a $20.3 billion burden in 2011, 5.2% of total costs to the healthcare system nationwide. One of the major
challenges facing clinicians is to identify and recognize patients with sepsis and impending organ dysfunction.
The clinical manifestations of sepsis are highly variable and the signs of infection and organ dysfunction can be
subtle and may mimic other conditions. Sepsis is also highly time critical. Every 1-hour delay in antibiotics after
emergency department (ED) triage or the onset of organ dysfunction or shock is associated with a 3–7% increase
in the odds of a poor outcome. These conditions have created an environment where physicians have to diagnose
a complex, heterogeneous condition in a short timeframe with limited information. There is currently a dire need
for a tool that can quickly assess if a patient is at risk for sepsis.
Prenosis is a company focused on elucidating the complexity of dysregulated host response to infection. In
partnership with 4 hospitals, we have built the world’s largest and most rapidly growing dataset & data-rich
biobank that combine time series biomarker data with clinical data for patients suspected of infection in hospital
environments. This dataset & biobank currently have >2,000 patients, >70,000 proprietary biomarker
measurements, >1,200,000 Electronic Medical Record (EMR) parameters, and >25,000 samples banked (all
with accompanying full time series EMR data). We currently have executed contracts for 6 total hospital
partnerships, with the potential to expand the dataset by >65,000 patients per year if our pipeline were at full
capacity.
In this proposed project, Prenosis will finalize the first version of the NOSISTM platform by growing our current
proprietary dataset & biobank from its current size of about 2,000 patients to over 10,000 total patients (Aim
1). Using the current 2,000 patient dataset, we have demonstrated initial promising endotypes of sepsis that
could be useful for a variety of critical clinical problems. As we grow the dataset to 10,000 patients, we will use
unsupervised machine learning algorithms trained on roughly half of the patients (5,000) to definitively prove
the robustness and usefulness of these endotypes. The other half of the patients (other 5,000) will be used as a
multi-site validation cohort for the endotypes determined by the ML algorithms (Aim 2). We will also finalize
the actual software platform for the NOSISTM product (Aim 3), including data security, restricted access by
collaborators to train and jointly develop products, and templates for business partnerships with potential
collaborators (with an initial focus on HIT companies and pharma companies).
主要研究者/项目负责人(最后,第一,中间):Reddy,Jr.,鲍比
项目概要:
脓毒症是一种知之甚少的临床综合征,其特征在于免疫系统的免疫调节异常。
对感染的反应。它是导致死亡的主要原因,也是美国医院治疗费用最高的疾病,
2011年,这一负担为203亿美元,占全国医疗保健系统总成本的5.2%。的一个主要
临床医生面临的挑战是识别和识别患有脓毒症和即将发生的器官功能障碍的患者。
脓毒症的临床表现是高度可变的,并且感染和器官功能障碍的体征可被诊断为是严重的。
微妙的,可以模仿其他条件。脓毒症也是高度时间关键的。抗生素每延迟1小时,
急诊科(艾德)分诊或器官功能障碍或休克的发生与3-7%的增加相关
结果不佳的几率这些条件创造了一个环境,医生必须诊断
一个复杂的,异质的条件下,在很短的时间内与有限的信息。目前迫切需要
寻找一种可以快速评估患者是否有败血症风险的工具。
Prenosis是一家专注于阐明宿主对感染反应失调的复杂性的公司。在
我们与4家医院合作,建立了世界上最大、增长最快的数据集,数据丰富
将联合收割机时间序列生物标志物数据与疑似医院感染患者的临床数据相结合的生物库
环境.该数据集和生物库目前有> 2,000名患者,> 70,000种专有生物标志物
测量,> 1,200,000个电子病历(EMR)参数和> 25,000个样本库(所有
伴随着完整的时间序列EMR数据)。目前,我们已经为6家医院签订了合同。
合作伙伴关系,如果我们的管道满负荷运行,每年有可能将数据集扩展至> 65,000例患者
容量
在这个拟议的项目中,Prenosis将最终确定NOSISTM平台的第一版,
专有数据集和生物库从目前的约2,000名患者到超过10,000名患者(Aim
1)。使用目前的2,000例患者数据集,我们已经证明了最初有希望的败血症内型,
可以用于各种重要的临床问题。当我们将数据集扩展到10,000名患者时,我们将使用
无监督机器学习算法在大约一半的患者(5,000人)身上进行了训练,以明确证明
这些内型的稳健性和有用性。另一半患者(另外5,000名)将用作
ML算法确定的内型的多中心验证队列(目标2)。我们还将最终确定
NOSISTM产品的实际软件平台(目标3),包括数据安全、限制访问
合作者培训和共同开发产品,以及具有潜力的商业伙伴关系的模板
合作者(最初专注于HIT公司和制药公司)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bobby Reddy其他文献
Bobby Reddy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bobby Reddy', 18)}}的其他基金
Combined Biomarker and EMR Data for Heterogeneous Treatment Effects and Surrogate Endpoints in Sepsis
脓毒症异质治疗效果和替代终点的生物标志物和 EMR 数据相结合
- 批准号:
10603924 - 财政年份:2023
- 资助金额:
$ 98.95万 - 项目类别:
Use of Time Series Biomarker and Clinical Data to Construct a Time Trajectory Host Response Map
使用时间序列生物标志物和临床数据构建时间轨迹宿主响应图
- 批准号:
10699456 - 财政年份:2023
- 资助金额:
$ 98.95万 - 项目类别:
Collaborative Platform for Developing Sepsis Products by Leveraging Sepsis Endotypes Developed Using a Unified Biomarker-Clinical Dataset
利用统一生物标志物临床数据集开发的脓毒症内型来开发脓毒症产品的协作平台
- 批准号:
10082229 - 财政年份:2020
- 资助金额:
$ 98.95万 - 项目类别:
Point of Care Device for Reducing Overuse of Antibiotics in Potentially Septic Hospital Populations
用于减少潜在脓毒症医院人群过度使用抗生素的护理设备
- 批准号:
9410203 - 财政年份:2017
- 资助金额:
$ 98.95万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 98.95万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 98.95万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 98.95万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 98.95万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 98.95万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 98.95万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 98.95万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 98.95万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 98.95万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 98.95万 - 项目类别:
Research Grant