Metabolic basis of the NADPH-independent disulfide reductase system in mouse liver
小鼠肝脏中不依赖 NADPH 的二硫键还原酶系统的代谢基础
基本信息
- 批准号:10263357
- 负责人:
- 金额:$ 43.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-14 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAdenosineAffectAnabolismBiliaryBiologyBypassCarbonCatabolismCellsCoenzyme AConsumptionCreatineCysteineDNADNA MethylationDependenceDiseaseDisulfidesEnzymesExcretory functionFeedbackFolic AcidFutureGenerationsGlutamatesGlutathioneGlutathione DisulfideGlutathione ReductaseGlycineHealthHepaticHepatocyteHomeostasisInflammatoryInstitutionInvestigationKnockout MiceKnowledgeLabelLeadLecithinLipidsLiverMalignant NeoplasmsMammalian CellMetabolicMetabolic PathwayMetabolismMethionineMethylationMethyltransferaseMicrobeModelingMusNADPNatural regenerationNerve DegenerationNormal CellNutrientOrganoidsOutcomeOxidantsOxidation-ReductionOxidative StressOxidoreductasePathogenicityPathway interactionsPatientsPeripheralPhysiologicalPositioning AttributePredispositionProcessProductionProteinsRNAReactionRegulationResourcesRoleRouteS-AdenosylhomocysteineSerineSourceStable Isotope LabelingStressSulfurSulfur Amino AcidsSulfur Metabolism PathwaySystemTestingTherapeuticTissuesToxinTranslationsVisionWorkamino acid metabolismbasecarbon skeletonclinical applicationcombathistone methylationliver metabolismmetabolomicsmethyl groupmouse modelnovel therapeutic interventionoxidationoxidative damagepathogenpreventreaction rateregenerativeresponsestable isotopetherapeutic targetthioredoxin reductasethioredoxin reductase 1uptake
项目摘要
What is known: Disulfide reduction-fueled enzymes s!upport homeostasis and combat oxidative damage that
contributes to neurodegeneration, inflammatory diseases, and cancer. NADPH provides the reducing power for
most anabolic and cytoprotective reduction reactions, yet only two enzymes can use NADPH to reduce
cytosolic disulfides: thioredoxin reductase-1 (TrxR1) and glutathione reductase (Gsr) 1. Both TrxR1 and Gsr have
active sites that are dominantly inhibited by electrophilic toxins and oxidants 2, 3. In Co-PI Schmidt’s lab, mice
with TrxR1/Gsr-null livers uncovered unexpected robustness in the disulfide reductase systems, including an
NADPH-independent pathway that uses catabolism of methionine (Met) to sustain redox homeostasis 4.
Importantly, this pathway is also thought to sustain normal cells under oxidative or electrophilic stress 5. Met and
Cys are the 2 sulfur (S)-amino acids found in proteins, but S-containing molecules synthesized from Met or Cys,
including S-adenosyl-Met (SAM), glutathione (GSH), CoA, and others, are also important in redox, detox,
energetics, biosynthesis, regulation, and other processes. Co-PI DeNicola has been studying the roles of altered
S-amino acid metabolism in sustaining some cancers6. These studies are revealing how some cancers use
altered S-amino acid redox metabolism, which could uncover targetable cancer-specific susceptibilities.
Unresolved questions: It remains unknown how other metabolic activities, including those that directly utilize
Met or Cys, as well as more peripheral systems that either (i) supply resources to these pathways; (ii) depend
upon these pathways; or (iii) might, in some conditions, compete with these pathways for substrates, are
realigned to help cells survive stress. We hypothesize that conversion to Met-dependence involves realignment
of diverse metabolic pathways. This work is significant because a better understanding of these processes will
uncover processes that can be therapeutically targeted to either specifically increase the robustness of critical
cells under oxidative or toxic stress, or specifically increase the vulnerability of pathogenic cells in cancer or
inflammatory diseases. New preliminary investigations in this resubmission demonstrate our ability to perform
stable isotope flux labeling studies in whole mice and in mouse-derived hepatic organoids.
What is proposed: In this revised multi-institution collaborative project, we will define the metabolic pathway
realignments that occur when hepatocytes switch from NADPH-dependent to -independent disulfide reduction.
We propose 3 Specific Aims: Aim 1, Define how NADPH- versus Met-fueled disulfide reductase homeostasis
influences S-metabolism prioritization. Aim 2, Define how re-wiring of serine metabolism supports Met-fueled
disulfide reductase homeostasis. Aim 3, Test whether Met-dependent survival increases the activity and
dependence on liver methyltransferases.
Anticipated outcomes, value: This project will help us understand how global shifts in hepatic metabolism
occurs in response to severe oxidative or electrophilic stress in liver, and how this helps sustain health.
什么是已知的:二硫化物还原燃料酶!支持体内平衡和对抗氧化损伤,
导致神经退化、炎性疾病和癌症。NADPH提供还原力,
大多数合成代谢和细胞保护还原反应,但只有两种酶可以使用NADPH来还原
胞质二硫化物:硫氧还蛋白还原酶-1(TrxR 1)和谷胱甘肽还原酶(Gsr)1。TrxR 1和Gsr都具有
活性位点,主要抑制亲电毒素和氧化剂2,3。在合作PI施密特的实验室里,
TrxR 1/Gsr缺失的肝脏发现了二硫还原酶系统的意外稳健性,包括
NADPH非依赖性途径,使用蛋氨酸(Met)的催化剂来维持氧化还原稳态4。
重要的是,这种途径也被认为是在氧化或亲电应激下维持正常细胞5。相遇并
Cys是在蛋白质中发现的2种硫(S)-氨基酸,但是由Met或Cys合成的含S分子,
包括S-腺苷-Met(SAM)、谷胱甘肽(GSH)、CoA等,在氧化还原,排毒,
能量学、生物合成、调节和其他过程。Co-PI DeNicola一直在研究改变的
S-氨基酸代谢在维持某些癌症6.这些研究揭示了一些癌症是如何利用
改变的S-氨基酸氧化还原代谢,这可能揭示靶向癌症特异性的易感性。
未解决的问题:目前还不清楚其他代谢活动,包括那些直接利用
Met或Cys,以及更多的外周系统,其(i)为这些途径提供资源;(ii)依赖于
或(iii)在某些条件下可能与这些途径竞争底物,
帮助细胞在压力下存活我们假设,转换为MET依赖涉及重新调整
不同的代谢途径。这项工作意义重大,因为更好地了解这些过程将
揭示可以治疗靶向的过程,以特异性地增加关键的
在氧化或毒性应激下的细胞,或特别是增加癌症中致病细胞的脆弱性,
炎症性疾病。在这次重新提交的新的初步调查表明,我们的能力,
在整个小鼠和小鼠来源的肝类器官中进行的稳定同位素通量标记研究。
建议内容:在这个修订后的多机构合作项目中,我们将定义代谢途径
当肝细胞从NADPH依赖性二硫键还原转换为非依赖性二硫键还原时发生的重组。
我们提出了3个具体目标:目标1,定义NADPH与Met燃料二硫键还原酶的稳态
影响S-代谢优先化。目的2,定义丝氨酸代谢的重新布线如何支持Met燃料
二硫还原酶稳态目的3,测试Met依赖性存活是否增加活性,
依赖肝甲基转移酶。
预期结果,价值:该项目将帮助我们了解肝脏代谢的全球变化
发生在对肝脏严重氧化或亲电应激的反应中,以及这如何有助于维持健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gina Marie DeNicola其他文献
Gina Marie DeNicola的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gina Marie DeNicola', 18)}}的其他基金
Investigation of NRF2-Dependent Metabolic Liabilities
NRF2 依赖性代谢负担的研究
- 批准号:
10582332 - 财政年份:2023
- 资助金额:
$ 43.3万 - 项目类别:
Metabolic basis of the NADPH-independent disulfide reductase system in mouse liver
小鼠肝脏中不依赖 NADPH 的二硫键还原酶系统的代谢基础
- 批准号:
10056616 - 财政年份:2020
- 资助金额:
$ 43.3万 - 项目类别:
Metabolic basis of the NADPH-independent disulfide reductase system in mouse liver
小鼠肝脏中不依赖 NADPH 的二硫键还原酶系统的代谢基础
- 批准号:
10473813 - 财政年份:2020
- 资助金额:
$ 43.3万 - 项目类别:
Metabolic basis of the NADPH-independent disulfide reductase system in mouse liver
小鼠肝脏中不依赖 NADPH 的二硫键还原酶系统的代谢基础
- 批准号:
10005545 - 财政年份:2019
- 资助金额:
$ 43.3万 - 项目类别:
Investigation of NRF2-Dependent Metabolic Liabilities
NRF2 依赖性代谢负担的研究
- 批准号:
10427369 - 财政年份:2018
- 资助金额:
$ 43.3万 - 项目类别:
Investigation of NRF2-Dependent Metabolic Liabilities
NRF2 依赖性代谢负担的研究
- 批准号:
10207542 - 财政年份:2018
- 资助金额:
$ 43.3万 - 项目类别:
Investigation of NRF2-Dependent Metabolic Liabilities
NRF2 依赖性代谢负担的研究
- 批准号:
10411427 - 财政年份:2018
- 资助金额:
$ 43.3万 - 项目类别:
相似国自然基金
基于ADK/Adenosine调控DNA甲基化探讨“利湿化瘀通络”法对2型糖尿病肾病足细胞裂孔膜损伤的干预机制研究
- 批准号:82074359
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
细胞外腺苷(Adenosine)作为干细胞旁分泌因子的生物学鉴定和功能分析
- 批准号:81570244
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
Adenosine诱导A1/A2AR稳态失衡启动慢性低灌注白质炎性损伤及其机制
- 批准号:81171113
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Targeting the A2B Adenosine Receptor for Immunoprevention of Pancreatic Cancer
靶向 A2B 腺苷受体用于胰腺癌的免疫预防
- 批准号:
10929664 - 财政年份:2023
- 资助金额:
$ 43.3万 - 项目类别:
Exploring the role of adenosine A2A receptors in Schizophrenia using opto-pharmacologically controlled allosteric modulation.
利用光药理学控制的变构调节探索腺苷 A2A 受体在精神分裂症中的作用。
- 批准号:
23K14685 - 财政年份:2023
- 资助金额:
$ 43.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Role of Adenosine Kinase in Mixed Diastolic Heart Failure and Alzheimer Disease
腺苷激酶在混合性舒张性心力衰竭和阿尔茨海默病中的作用
- 批准号:
10679989 - 财政年份:2023
- 资助金额:
$ 43.3万 - 项目类别:
Allostery-driven G protein selectivity in the adenosine A1 receptor
腺苷 A1 受体中变构驱动的 G 蛋白选择性
- 批准号:
BB/W016974/1 - 财政年份:2023
- 资助金额:
$ 43.3万 - 项目类别:
Research Grant
Investigation of new test methods for adenosine-sensitive atrioventricular block
腺苷敏感型房室传导阻滞新检测方法的探讨
- 批准号:
23K07566 - 财政年份:2023
- 资助金额:
$ 43.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Probing the role of adenosine pathway in SIV pathogenesis
探讨腺苷途径在 SIV 发病机制中的作用
- 批准号:
10760676 - 财政年份:2023
- 资助金额:
$ 43.3万 - 项目类别:
The role of A1 adenosine receptor signaling in the decline of S. pneumoniae killing by neutrophils in vaccinated aged hosts
A1 腺苷受体信号传导在疫苗接种老年宿主中中性粒细胞杀伤肺炎链球菌下降中的作用
- 批准号:
10605737 - 财政年份:2023
- 资助金额:
$ 43.3万 - 项目类别:
Adenosine triphosphate as a master variable for biomass in the oceanographic context
三磷酸腺苷作为海洋学背景下生物量的主变量
- 批准号:
2319114 - 财政年份:2023
- 资助金额:
$ 43.3万 - 项目类别:
Standard Grant
Late-Stage Functionalisation of Cyclic Guanosine Monophosphate - Adenosine Monophosphate
环单磷酸鸟苷-单磷酸腺苷的后期功能化
- 批准号:
2751533 - 财政年份:2022
- 资助金额:
$ 43.3万 - 项目类别:
Studentship
Postnatal development of adenosine kinase in the brainstem network that controls breathing
控制呼吸的脑干网络中腺苷激酶的出生后发育
- 批准号:
573323-2022 - 财政年份:2022
- 资助金额:
$ 43.3万 - 项目类别:
University Undergraduate Student Research Awards